Skip to main content
Log in

The value of power-related options under spectrally negative Lévy processes

  • Published:
Review of Derivatives Research Aims and scope Submit manuscript

Abstract

We provide analytical tools for pricing power options with exotic features (capped or log payoffs, gap options etc.) in the framework of exponential Lévy models driven by one-sided stable or tempered stable processes. Pricing formulas take the form of fast converging series of powers of the log-forward moneyness and of the time-to-maturity; these series are obtained via a factorized integral representation in the Mellin space evaluated by means of residues in \(\mathbb {C}\) or \(\mathbb {C}^2\). Comparisons with numerical methods and efficiency tests are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abramowitz, M., & Stegun, I. (1972). Handbook of mathematical functions. Mineola, NY: Dover Publications.

    Google Scholar 

  • Aguilar, J Ph. (2019). On expansions for the Black–Scholes prices and hedge parameters. Journal of Mathematical Analysis and Applications, 478(2), 973–989.

    Article  Google Scholar 

  • Aguilar, J Ph, & Korbel, J. (2019). Simple formulas for pricing and hedging European options in the finite moment log-stable model. Risks, 7, 36.

    Article  Google Scholar 

  • Avram, F., Chan, T., & Usabel, M. (2002). On the valuation of constant barrier options under spectrally one-sided exponential Lévy models and Carr’s approximation for American puts. Stochastic Processes and Their Applications, 100, 75–107.

    Article  Google Scholar 

  • Bakshi, G., & Madan, D. (2000). Spanning and derivative-security valuation. Journal of Financial Economics, 55, 205–238.

    Article  Google Scholar 

  • Bateman, H. (1954). Tables of integral transforms (Vol. I and II). New York: McGraw-Hill Book Company.

    Google Scholar 

  • Bertoin, J. (1996). Lévy processes. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bingham, N. H. (1973). Maxima of sums of random variables and suprema of stable processes. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete (Vol. 26, Issue 4). Berlin: Springer.

  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637–654.

    Article  Google Scholar 

  • Bouzianis, G., & Hughston, L. P. (2019). Determination of the Lévy exponent in asset pricing models. arXiv:1811.07220.

  • Carr, P., & Madan, D. (1999). Option valuation using the fast Fourier transform. Journal of Computational Finance, 2, 61–73.

    Article  Google Scholar 

  • Carr, P., & Madan, D. (2001). Optimal positioning in derivative securities. Quantitative Finance, 1, 19–37.

    Article  Google Scholar 

  • Carr, P., Geman, H., Madan, D., & Yor, M. (2002). The fine structure of asset returns: An empirical investigation. Journal of Business, 75(2), 305–332.

    Article  Google Scholar 

  • Carr, P., & Wu, L. (2003). The finite moment log stable process and option pricing. The Journal of Finance, 58(2), 753–777.

    Article  Google Scholar 

  • Cont, R., & Tankov, P. (2004). Financial modelling with jump processes. New York: Chapman & Hall.

    Google Scholar 

  • Cont, R., & Voltchkova, E. (2005). A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. SIAM Journal on Numerical Analysis, 43(4), 1596–1626.

    Article  Google Scholar 

  • Eberlein, E., & Madan, D. (2010). Short positions, rally fears and option markets. Applied Mathematical Finance, 17(1), 83–98.

    Article  Google Scholar 

  • Embrechts, P., & Maejima, M. (2000). An introduction to the theory of selfsimilar stochastic processes. International Journal of Modern Physics B, 14, 1399–1420.

    Article  Google Scholar 

  • Fama, E. (1965). The behavior of stock market prices. Journal of Business, 38, 34–105.

    Article  Google Scholar 

  • Fang, F., & Oosterlee, C. W. (2008). A novel pricing method for European options based on Fourier-cosine series expansions. SIAM Journal on Scientific Computing, 31, 826–848.

    Article  Google Scholar 

  • Feng, L., & Linetsky, V. (2008). Pricing discretely monitored barrier options and defaultable bonds in Lévy process models: A fast Hilbert transform approach. Mathematical Finance, 18(3), 337–384.

    Article  Google Scholar 

  • Flajolet, P., Gourdon, X., & Dumas, P. (1995). Mellin transforms and asymptotics: Harmonic sums. Theoretical Computer Science, 144, 3–58.

    Article  Google Scholar 

  • Geman, H. (2002). Pure jump Lévy processes for asset price modelling. Journal of Banking Finance, 26, 1297–1316.

    Article  Google Scholar 

  • Gerhold, S., Gülüm, C., & Pinter, A. (2016). Small-maturity asymptotics for the at-the-money implied volatility slope in Lévy models. Applied Mathematical Finance, 23(2), 135–157.

    Article  Google Scholar 

  • Haug, E. G. (2007). The complete guide to option pricing formulas. New York: McGraw-Hill Book Company.

    Google Scholar 

  • Heynen, R., & Kat, H. (1996). Pricing and hedging power options. Financial Engineering and the Japanese Markets, 3(3), 253–261.

    Article  Google Scholar 

  • Ibrahim, S. N. I., O’Hara, J., & Constantinou, N. (2013). Risk-neutral valuation of power barrier options. Applied Mathematics Letters, 26(6), 595–600.

    Article  Google Scholar 

  • Kirkby, J. L. (2015). Efficient option pricing by frame duality with the fast Fourier transform. SIAM Journal on Financial Mathematics, 6(1), 713–747.

    Article  Google Scholar 

  • Kirkby, J. L., & Deng, S. J. (2019). Static hedging and pricing of exotic options with payoff frames. Mathematical Finance, 29(2), 612–658.

    Article  Google Scholar 

  • Kou, S. (2002). A jump-diffusion model for option pricing. Management Science, 48, 1086–1101.

    Article  Google Scholar 

  • Kuznetsov, A., Kyprianou, A. E., & Rivero, V. (2011). The theory of scale functions for spectrally negative Lévy processes. In Lecture notes in mathematics (Vol. 2061). Berlin: Springer.

  • Kyprianou, A. E. (2013). Fluctuations of Lévy processes with applications. Berlin: Springer.

    Google Scholar 

  • Lewis, A.L. (2001). A simple option formula for general jump-diffusion and other exponential Lévy processes. Available at SSRN: https://ssrn.com/abstract=282110

  • Macovschi, S., & Quittard-Pinon, F. (2006). On the pricing of power and other polynomial options. The Journal of Derivatives, 13(4), 61–71.

    Article  Google Scholar 

  • Madan, D., Carr, P., & Chang, E. (1998). The variance gamma process and option pricing. European Finance Review, 2, 79–105.

    Article  Google Scholar 

  • Madan, D., & Schoutens, W. (2008). Break on through to the single side. Working paper, Katholieke Universiteit Leuven.

  • Merton, R. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3, 125–144.

    Article  Google Scholar 

  • Panini, R., & Srivastav, R. P. (2004). Option pricing with Mellin transforms. Mathematical and Computer Modeling, 40, 43–56.

    Article  Google Scholar 

  • Passare, M., Tsikh, A., & Zhdanov, O. (1997). A multidimensional Jordan residue lemma with an application to Mellin–Barnes integrals, aspects of mathematics (Vol. E26). Berlin: Springer.

    Google Scholar 

  • Patie, P. (2013). Asian options under one-sided Lévy models. Journal of Applied Probability, 50(2), 359–373.

    Article  Google Scholar 

  • Poirot, J., & Tankov, P. (2006). Monte Carlo option pricing for tempered stable (CGMY) processes. Asia-Pacific Financial Markets, 13, 327–344.

    Article  Google Scholar 

  • Rosiński, J. (2007). Tempering stable processes. Stochastic Processes and Their Applications, 117, 677–707.

    Article  Google Scholar 

  • Samorodnitsky, G., & Taqqu, M. S. (1994). Stable non-Gaussian random processes: Stochastic models with infinite variance. New York: Chapman & Hall.

    Google Scholar 

  • Schoutens, W. (2003). Lévy processes in finance: Pricing financial derivatives. Hoboken, NJ: Wiley.

    Book  Google Scholar 

  • Tankov, P. (2010). Pricing and hedging gap risk. Journal of Computational Finance, 13(3), 33–59.

    Article  Google Scholar 

  • Tankov, P. (2011). Pricing and hedging in exponential Lévy models: Review of recent results. In Lecture notes in mathematics (Vol. 2003). Berlin: Springer.

  • Tompkins, R. (1999). Power options: Hedging nonlinear risks. The Journal of Risk, 2(2), 29–45.

    Article  Google Scholar 

  • Wilmott, P. (2006). Paul Wilmott on quantitative finance. Hoboken: Wiley.

    Google Scholar 

  • Zolotarev, V. M. (1986). One-dimensional stable distributions. Providence: American Mathematical Society.

    Book  Google Scholar 

Download references

Acknowledgements

The author thanks an anonymous reviewer for his/her insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Aguilar.

Ethics declarations

Conflict of interest

The authors declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar, JP. The value of power-related options under spectrally negative Lévy processes. Rev Deriv Res 24, 173–196 (2021). https://doi.org/10.1007/s11147-020-09174-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11147-020-09174-0

Keywords

Mathematics Subject Classification

JEL Classification

Navigation