Skip to main content
Log in

Infinite order linear differential equation satisfied by p-adic Hurwitz-type Euler zeta functions

  • Published:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg Aims and scope Submit manuscript

Abstract

In 1900, at the international congress of mathematicians, Hilbert claimed that the Riemann zeta function \(\zeta (s)\) is not the solution of any algebraic ordinary differential equations on its region of analyticity. In 2015, Van Gorder (J Number Theory 147:778–788, 2015) considered the question of whether \(\zeta (s)\) satisfies a non-algebraic differential equation and showed that it formally satisfies an infinite order linear differential equation. Recently, Prado and Klinger-Logan (J Number Theory 217:422–442, 2020) extended Van Gorder’s result to show that the Hurwitz zeta function \(\zeta (s,a)\) is also formally satisfies a similar differential equation

$$\begin{aligned} T\left[ \zeta (s,a) - \frac{1}{a^s}\right] = \frac{1}{(s-1)a^{s-1}}. \end{aligned}$$

But unfortunately in the same paper they proved that the operator T applied to Hurwitz zeta function \(\zeta (s,a)\) does not converge at any point in the complex plane \({\mathbb {C}}\). In this paper, by defining \(T_{p}^{a}\), a p-adic analogue of Van Gorder’s operator T,  we establish an analogue of Prado and Klinger-Logan’s differential equation satisfied by \(\zeta _{p,E}(s,a)\) which is the p-adic analogue of the Hurwitz-type Euler zeta functions

$$\begin{aligned} \zeta _E(s,a)=\sum _{n=0}^\infty \frac{(-1)^n}{(n+a)^s}. \end{aligned}$$

In contrast with the complex case, due to the non-archimedean property, the operator \(T_{p}^{a}\) applied to the p-adic Hurwitz-type Euler zeta function \(\zeta _{p,E}(s,a)\) is convergent p-adically in the area of \(s\in {\mathbb {Z}}_{p}\) with \(s\ne 1\) and \(a\in K\) with \(|a|_{p}>1,\) where K is any finite extension of \({\mathbb {Q}}_{p}\) with ramification index over \({\mathbb {Q}}_{p}\) less than \(p-1.\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohen, H.: Number Theory Vol. II: Analytic and Modern Tools, Graduate Texts in Mathematics, 240, Springer, New York (2007)

  2. Cvijović, D.: A note on convexity properties of functions related to the Hurwitz zeta and alternating Hurwitz zeta function. J. Math. Anal. Appl. 487(1), 123972, 8 (2020)

  3. Goss, D.: Zeroes of \(L\)-series in characteristic \(p\). Int. J. Appl. Math. Stat. 11(N07), 69–80 (2007)

  4. Hurwitz, A.: Einige Eigenschaften der Dirichletschen Funktionen \(F(s)=\sum (\frac{D}{n})\cdot \frac{1}{n^{s}},\) die bei der Bestimmung der Klassenanzahlen Binärer quadratischer Formen auftreten. Z. für Math. und Physik 27, 86–101 (1882)

    MATH  Google Scholar 

  5. Hilbert, D.: Mathematische Probleme, in: Die Hilbertschen Probleme, Akademische Verlagsgesellschadt Geest & Portig, Leipzig (1971) pp. 23–80

  6. Hu, S., Kim, M.-S.: On Dirichlet’s lambda function. J. Math. Anal. Appl. 478(2), 952–972 (2019)

    Article  MathSciNet  Google Scholar 

  7. Hu, S., Kim, D., Kim, M.-S.: Special values and integral representations for the Hurwitz-type Euler zeta functions. J. Korean Math. Soc. 55(1), 185–210 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Katz, N.M.: \(p\)-adic \(L\)-functions via moduli of elliptic curves. Algebraic geometry. In: Proc. Sympos. Pure Math., Humboldt State Univ., Arcata, Calif., 1974, vol. 29, pp. 479–506. Amer. Math. Soc., Providence, RI (1975)

  9. Kim, T.: On the analogs of Euler numbers and polynomials associated with \(p\)-adic \(q\)-integral on \({\mathbb{Z}}_p\) at \(q=-1\). J. Math. Anal. Appl. 331, 779–792 (2007)

    Article  MathSciNet  Google Scholar 

  10. Kim, M.-S., Hu, S.: On \(p\)-adic Hurwitz-type Euler zeta functions. J. Number Theory 132, 2977–3015 (2012)

    Article  MathSciNet  Google Scholar 

  11. Kim, M.-S., Hu, S.: On \(p\)-adic Diamond-Euler Log Gamma functions. J. Number Theory 133, 4233–4250 (2013)

    Article  MathSciNet  Google Scholar 

  12. Lang, S.: Cyclotomic Fields I and II, Combined, 2nd edn. Springer-Verlag, New York (1990)

    Google Scholar 

  13. Lang, S.: Undergraduate analysis, 2nd edn. Undergraduate Texts in Mathematics. Springer-Verlag, New York (1997)

    Book  Google Scholar 

  14. Osipov, Ju.V.: p-adic zeta functions. Uspekhi Mat. Nauk 34, 209–210 (1979)

    MathSciNet  MATH  Google Scholar 

  15. Prado, B.B., Klinger-Logan, K.: Linear Operators, the Hurwitz Zeta Function and Dirichlet \(L\)-Functions. J. Number Theory 217, 422–442 (2020)

    Article  MathSciNet  Google Scholar 

  16. Schikhof, W.H.: Ultrametric Calculus. An Introduction to \(p\)-Adic Analysis. Cambridge University Press, London (1984)

    MATH  Google Scholar 

  17. Shiratani, K., Yamamoto, S.: On a \(p\)-adic interpolation function for the Euler numbers and its derivatives. Mem. Fac. Sci. Kyushu Univ. Ser. A 39, 113–125 (1985)

    MathSciNet  MATH  Google Scholar 

  18. Tangedal, B.A., Young, P.T.: On \(p\)-adic multiple zeta and log gamma functions. J. Number Theory 131, 1240–1257 (2011)

    Article  MathSciNet  Google Scholar 

  19. Van Gorder, R.A.: Does the Riemann zeta function satisfy a differential equation? J. Number Theory 147, 778–788 (2015)

    Article  MathSciNet  Google Scholar 

  20. Washington, L.C.: Introduction to Cyclotomic Fields. Graduate Texts in Mathematics, vol. 83, 2nd edn. Springer, New York (1997)

    Book  Google Scholar 

  21. Weil, A.: Number theory. An approach through history, From Hammurapi to Legendre, Birkhäuser Boston Inc, Boston, MA (1984)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are enormously grateful to the anonymous referee for his/her very careful reading of this paper, and for his/her many valuable and detailed suggestions. We also thank Professor Lawrence C. Washington for pointing out a gap in the proof of Lemma 3.1 of the original manuscript and for his helpful suggestions. Su Hu is supported by the Natural Science Foundation of Guangdong Province, China (No. 2020A1515010170). Min-Soo Kim is supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2019R1F1A1062499).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Soo Kim.

Additional information

Dedicated to the memory of Prof. David Goss (1952–2017)

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Kim, MS. Infinite order linear differential equation satisfied by p-adic Hurwitz-type Euler zeta functions. Abh. Math. Semin. Univ. Hambg. 91, 117–135 (2021). https://doi.org/10.1007/s12188-021-00234-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12188-021-00234-2

Keywords

Mathematics Subject Classification

Navigation