1932

Abstract

Nearly all structures in our body experience mechanical forces. At a molecular scale, these forces are detected by ion channels that function as mechanotransducers converting physical forces into electrochemical responses. Here we focus on PIEZOs, a family of mechanically activated ion channels comprising PIEZO1 and PIEZO2. The significance of these channels is highlighted by their roles in touch and pain sensation as well as in cardiovascular and respiratory physiology, among others. Moreover, mutations in PIEZOs cause somatosensory, proprioceptive, and blood disorders. The goal here is to present the diverse physiology and pathophysiology of these unique channels, discuss ongoing research and critical gaps in the field, and explore the pharmaceutical interest in targeting PIEZOs for therapeutic development.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-093020-120939
2021-07-08
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/neuro/44/1/annurev-neuro-093020-120939.html?itemId=/content/journals/10.1146/annurev-neuro-093020-120939&mimeType=html&fmt=ahah

Literature Cited

  1. Alcaino C, Farrugia G, Beyder A. 2016. Mechanosensitive Piezo channels in the gastrointestinal tract. Curr. Top. Membr. 79:219–44
    [Google Scholar]
  2. Alcaino C, Knutson KR, Treichel AJ, Yildiz G, Strege PR et al. 2018. A population of gut epithelial enterochromaffin cells is mechanosensitive and requires Piezo2 to convert force into serotonin release. PNAS 115:7632–41
    [Google Scholar]
  3. Alper SL. 2017. Genetic diseases of PIEZO1 and PIEZO2 dysfunction. Curr. Top. Membr. 79:97–134
    [Google Scholar]
  4. Aven L, Ai X 2013. Mechanisms of respiratory innervation during embryonic development. Organogenesis 9:194–98
    [Google Scholar]
  5. Bai WY, Wang L, Ying Z-M, Hu B, Xu L et al. 2020. Identification of PIEZO1 polymorphisms for human bone mineral density. Bone 133:115247
    [Google Scholar]
  6. Bai X, Bouffard J, Lord A, Brugman K, Sternberg PW et al. 2020. Caenorhabditis elegans PIEZO channel coordinates multiple reproductive tissues to govern ovulation. eLife 9:e53603
    [Google Scholar]
  7. Beaulieu-Laroche L, Christin M, Donoghue A, Agosti F, Yousefpour N et al. 2020. TACAN is an ion channel involved in sensing mechanical pain. Cell 180:956–67
    [Google Scholar]
  8. Borbiro I, Badheka D, Rohacs T. 2015. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides. Sci. Signal. 8:ra15
    [Google Scholar]
  9. Brohawn SG, Campbell EB, Mackinnon R. 2014. Physical mechanism for gating and mechanosensitivity of the human TRAAK K+ channel. Nature 516:126–30
    [Google Scholar]
  10. Cahalan SM, Lukacs V, Ranade SS, Chien S, Bandell M et al. 2015. Piezo1 links mechanical forces to red blood cell volume. eLife 4:e07370
    [Google Scholar]
  11. Chen X, Wanggou S, Bodalia A, Zhu M, Dong W et al. 2018. A feedforward mechanism mediated by mechanosensitive ion channel PIEZO1 and tissue mechanics promotes glioma aggression. Neuron 100:799–815
    [Google Scholar]
  12. Chesler AT, Szczot M, Bharucha-Goebel D, Čeko M, Donkervoort S et al. 2016. The role of PIEZO2 in human mechanosensation. New Engl. J. Med. 375:1355–64
    [Google Scholar]
  13. Cinar E, Zhou S, DeCourcey J, Wang Y, Waugh RE, Wan J 2015. Piezo1 regulates mechanotransductive release of ATP from human RBCs. PNAS 112:11783–88
    [Google Scholar]
  14. Corey DP, Hudspeth AJ. 1979. Response latency of vertebrate hair cells. Biophys. J. 26:499–506
    [Google Scholar]
  15. Coste B, Houge G, Murray MF, Stitziel N, Bandell M et al. 2013. Gain-of-function mutations in the mechanically activated ion channel PIEZO2 cause a subtype of Distal Arthrogryposis. PNAS 110:4667–72
    [Google Scholar]
  16. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S et al. 2010. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60
    [Google Scholar]
  17. Coste B, Murthy SE, Mathur J, Schmidt M, Mechioukhi Y et al. 2015. Piezo1 ion channel pore properties are dictated by C-terminal region. Nat. Commun. 6:7223
    [Google Scholar]
  18. Coste B, Xiao B, Santos JS, Syeda R, Grandl J et al. 2012. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483:176–81
    [Google Scholar]
  19. Cox CD, Bavi N, Martinac B. 2017. Origin of the force: the force-from-lipids principle applied to Piezo channels. Curr. Top. Membr. 79:59–96
    [Google Scholar]
  20. Cox CD, Gottlieb PA. 2019. Amphipathic molecules modulate PIEZO1 activity. Biochem. Soc. Trans. 47:1833–42
    [Google Scholar]
  21. Dalghi MG, Clayton DR, Ruiz WG, Al-Bataineh MM, Satlin LM et al. 2019. Expression and distribution of PIEZO1 in the mouse urinary tract. Am. J. Physiol. Renal Physiol. 317:F303–21
    [Google Scholar]
  22. De Felice D, Alaimo A 2020. Mechanosensitive piezo channels in cancer: focus on altered calcium signaling in cancer cells and in tumor progression. Cancers 12:1780
    [Google Scholar]
  23. Delmas P, Hao J, Rodat-Despoix L. 2011. Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat. Rev. Neurosci. 12:139–53
    [Google Scholar]
  24. Douguet D, Patel A, Xu A, Vanhoutte PM, Honoré E. 2019. Piezo ion channels in cardiovascular mechanobiology. Trends Pharmacol. Sci. 40:956–70
    [Google Scholar]
  25. Emery EC, Ernfors P 2018. Dorsal root ganglion neuron types and their functional specialization. The Oxford Handbook of the Neurobiology of Pain JN Wood New York: Oxford Univ. Press https://doi.org/10.1093/oxfordhb/9780190860509.013.4
    [Crossref] [Google Scholar]
  26. Enyedi P, Czirják G. 2010. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol. Rev. 90:559–605
    [Google Scholar]
  27. Etem , Ceylan GG, Özaydın S, Ceylan C, Özercan I, Kuloğlu T. 2018. The increased expression of Piezo1 and Piezo2 ion channels in human and mouse bladder carcinoma. Adv. Clin. Exp. Med. 27:1025–31
    [Google Scholar]
  28. Evans EL, Cuthbertson K, Endesh N, Rode B, Blythe NM et al. 2018. Yoda1 analogue (Dooku1) which antagonizes Yoda1-evoked activation of Piezo1 and aortic relaxation. Br. J. Pharmacol. 175:1744–59
    [Google Scholar]
  29. Faucherre A, Kissa K, Nargeot J, Mangoni ME, Jopling C. 2014. Piezo1 plays a role in erythrocyte volume homeostasis. Haematologica 99:70–75
    [Google Scholar]
  30. Florez-Paz D, Bali KK, Kuner R, Gomis A. 2016. A critical role for Piezo2 channels in the mechanotransduction of mouse proprioceptive neurons. Sci. Rep. 6:25923
    [Google Scholar]
  31. Fotiou E, Martin-Almedina S, Simpson MA, Lin S, Gordon K et al. 2015. Novel mutations in PIEZO1 cause an autosomal recessive generalized lymphatic dysplasia with non-immune hydrops fetalis. Nat. Commun. 6:8085
    [Google Scholar]
  32. Gada K, Plant LD. 2019. Two-pore domain potassium channels: emerging targets for novel analgesic drugs. Br. J. Pharmacol. 176:256–66
    [Google Scholar]
  33. Ge J, Li W, Zhao Q, Li N, Chen M et al. 2015. Architecture of the mammalian mechanosensitive Piezo1 channel. Nature 527:64–69
    [Google Scholar]
  34. Geng J, Liu W, Zhou H, Zhang T, Wang L et al. 2020. A plug-and-latch mechanism for gating the mechanosensitive piezo channel. Neuron 106:438–51
    [Google Scholar]
  35. Gnanasambandam R, Bae G, Gottlieb PA, Sachs F. 2015. Ionic selectivity and permeation properties of human PIEZO1 channels. PLOS ONE 10:e0125503
    [Google Scholar]
  36. Guharay F, Sachs F. 1984. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J. Physiol. 352:685–701
    [Google Scholar]
  37. Guo YR, MacKinnon R. 2017. Structure-based membrane dome mechanism for Piezo mechanosensitivity. eLife 6:e33660
    [Google Scholar]
  38. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100
    [Google Scholar]
  39. Haselwandter CA, Mackinnon R. 2018. Piezo's membrane footprint and its contribution to mechanosensitivity. eLife 7:e41968
    [Google Scholar]
  40. Hong GS, Lee B, Wee J, Chun H, Kim H et al. 2016. Tentonin 3/TMEM150c confers distinct mechanosensitive currents in dorsal-root ganglion neurons with proprioceptive function. Neuron 91:107–18
    [Google Scholar]
  41. Huang Z, Sun Z, Zhang X, Niu K, Wang Y et al. 2019. Loss of stretch-activated channels, PIEZOs, accelerates non-small cell lung cancer progression and cell migration. Biosci. Rep. 39:BSR20181679
    [Google Scholar]
  42. Hyman AJ, Tumova S, Beech DJ. 2017. Piezo1 channels in vascular development and the sensing of shear stress. Curr. Top. Membr. 79:37–57
    [Google Scholar]
  43. Ikeda R, Cha M, Ling J, Jia Z, Coyle D, Gu JG. 2014. Merkel cells transduce and encode tactile stimuli to drive Aβ- afferent impulses. Cell 153:664–75
    [Google Scholar]
  44. Katz B. 1950. Depolarization of sensory terminals and the initiation of impulses in the muscle spindle. J. Physiol. 111:261–82
    [Google Scholar]
  45. Kefauver JM, Ward AB, Patapoutian A. 2020. Discoveries in structure and physiology of mechanically activated ion channels. Nature 587:567–76
    [Google Scholar]
  46. Kim SE, Coste B, Chadha A, Cook B, Patapoutian A. 2012. The role of Drosophila Piezo in mechanical nociception. Nature 483:209–12
    [Google Scholar]
  47. Lamas JA, Rueda-Ruzafa L, Herrera-Pérez S. 2019. Ion channels and thermosensitivity: TRP, TREK, or both?. Int. J. Mol. Sci. 20:2371
    [Google Scholar]
  48. Lee CH, Chen CC. 2018. Roles of ASICs in nociception and proprioception. Adv. Exp. Med. Biol. 1099:37–47
    [Google Scholar]
  49. Lee W, Guilak F, Liedtke W. 2017. Role of Piezo channels in joint health and injury. Curr. Top. Membr. 79:263–73
    [Google Scholar]
  50. Lew VL, Tiffert T. 2017. On the mechanism of human red blood cell longevity: roles of calcium, the sodium pump, PIEZO1, and gardos channels. Front. Physiol. 8:977
    [Google Scholar]
  51. Lewis AH, Grandl J. 2015. Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension. eLife 4:e12088
    [Google Scholar]
  52. Lewis AH, Grandl J. 2020. Inactivation kinetics and mechanical gating of Piezo1 ion channels depend on subdomains within the cap. Cell Rep 30:870–80
    [Google Scholar]
  53. Li C, Rezania S, Kammerer S, Sokolowski A, Devaney T et al. 2015. Piezo1 forms mechanosensitive ion channels in the human MCF-7 breast cancer cell line. Sci. Rep. 5:8364
    [Google Scholar]
  54. Li J, Hou B, Tumova S, Muraki K, Bruns A et al. 2014. Piezo1 integration of vascular architecture with physiological force. Nature 515:279–82
    [Google Scholar]
  55. Li X, Han L, Nookaew I, Mannen E, Silva MJ et al. 2019. Stimulation of Piezo1 by mechanical signals promotes bone anabolism. eLife 8:e49631
    [Google Scholar]
  56. Lin Y-C, Guo YR, Miyagi A, Levring J, MacKinnon R, Scheuring S. 2019. Force-induced conformational changes in PIEZO1. Nature 573:230–34
    [Google Scholar]
  57. Lukacs V, Mathur J, Mao R, Bayrak-Toydemir P, Procter M et al. 2015. Impaired PIEZO1 function in patients with a novel autosomal recessive congenital lymphatic dysplasia. Nat. Commun. 6:8329
    [Google Scholar]
  58. Ma S, Cahalan S, LaMonte G, Grubaugh ND, Zeng W et al. 2018. Common PIEZO1 allele in African populations causes RBC dehydration and attenuates plasmodium infection. Cell 173:443–55
    [Google Scholar]
  59. Maingret F. 2000. Lysophospholipids open the two-pore domain mechano-gated K+ channels TREK-1 and TRAAK. J. Biol. Chem. 275:10128–33
    [Google Scholar]
  60. Maksimovic S, Nakatani M, Baba Y, Nelson AM, Marshall KL et al. 2014. Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 509:617–21
    [Google Scholar]
  61. Maneshi MM, Gottlieb PA, Hua SZ. 2017. A microfluidic approach for studying Piezo channels. Curr. Top. Membr. 79:309–34
    [Google Scholar]
  62. Martins JR, Penton D, Peyronnet R, Arhatte M, Moro C et al. 2016. Piezo1-dependent regulation of urinary osmolarity. Pflugers Arch 468:1197–206
    [Google Scholar]
  63. Marshall KL, Saade D, Ghitani N, Coombs AM, Szczot M et al. 2020. PIEZO2 in sensory neurons and urothelial cells coordinates urination. Nature 588:290–95
    [Google Scholar]
  64. McHugh BJ, Murdoch A, Haslett C, Sethi T. 2012. Loss of the integrin-activating transmembrane protein Fam38A (Piezo1) promotes a switch to a reduced integrin-dependent mode of cell migration. PLOS ONE 7:e40346
    [Google Scholar]
  65. McMillin MJ, Beck AE, Chong JX, Shively KM, Buckingham KJ et al. 2014. Mutations in PIEZO2 cause Gordon syndrome, Marden-Walker syndrome, and distal arthrogryposis type 5. Am. J. Hum. Genet. 94:734–44
    [Google Scholar]
  66. Mickle AD, Shepherd AJ, Mohapatra DP. 2016. Nociceptive TRP channels: sensory detectors and transducers in multiple pain pathologies. Pharmaceuticals 9:72
    [Google Scholar]
  67. Miyamoto T, Mochizuki T, Nakagomi H, Kira S, Watanabe M et al. 2014. Functional role for Piezo1 in stretch-evoked Ca2+ influx and ATP release in urothelial cell cultures. J. Biol. Chem. 289:16565–75
    [Google Scholar]
  68. Montal M. 1987. Reconstitution of channel proteins from excitable cells in planar lipid bilayer membranes. J. Membr. Biol. 98:101–15
    [Google Scholar]
  69. Murthy SE, Dubin AE, Patapoutian A. 2017. Piezos thrive under pressure: mechanically activated ion channels in health and disease. Nat. Rev. Mol. Cell Biol. 18:771–83
    [Google Scholar]
  70. Murthy SE, Loud MC, Daou I, Marshall KL, Schwaller F et al. 2018. The mechanosensitive ion channel Piezo2 mediates sensitivity to mechanical pain in mice. Sci. Transl. Med. 10:eaat9897
    [Google Scholar]
  71. Nomura T, Cranfield CG, Deplazes E, Owen DM, Macmillan A et al. 2012. Differential effects of lipids and lyso-lipids on the mechanosensitivity of the mechanosensitive channels MscL and MscS. PNAS 109:8770–75
    [Google Scholar]
  72. Nonomura K, Woo S-H, Chang RB, Gillich A, Qiu Z et al. 2016. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature 541:176–81
    [Google Scholar]
  73. Nosyreva ED, Thompson D, Syeda R. 2021. Identification and functional characterization of the Piezo1 channel pore domain. J. Biol. Chem. 296:100225
    [Google Scholar]
  74. Patkunarajah A, Stear JH, Moroni M, Schroeter L, Blaszkiewicz J et al. 2020. TMEM87a/Elkin1, a component of a novel mechanoelectrical transduction pathway, modulates melanoma adhesion and migration. eLife 9:e53308
    [Google Scholar]
  75. Poole K, Herget R, Lapatsina L, Ngo H-D, Lewin GR. 2014. Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch. Nat. Commun. 5:3520
    [Google Scholar]
  76. Qu S, Hu T, Qiu O, Su Y, Gu J, Xia Z. 2020. Effect of Piezo1 overexpression on peritumoral brain edema in glioblastomas. Am. J. Neuroradiol. 41:1423–29
    [Google Scholar]
  77. Ranade SS, Qiu Z, Woo S-H, Hur SS, Murthy SE et al. 2014a. Piezo1, a mechanically activated ion channel, is required for vascular development in mice. PNAS 111:10347–52
    [Google Scholar]
  78. Ranade SS, Syeda R, Patapoutian A. 2015. Mechanically activated ion channels. Neuron 87:1162–79
    [Google Scholar]
  79. Ranade SS, Woo S, Dubin AE, Moshourab RA, Wetzel C et al. 2014b. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 516:121–25
    [Google Scholar]
  80. Raoux M, Rodat-Despoix L, Azorin N, Giamarchi A, Hao J et al. 2007. Mechanosensor channels in mammalian somatosensory neurons. Sensors 7:1667–82
    [Google Scholar]
  81. Ridone P, Pandzic E, Vassalli M, Cox CD, Macmillan A et al. 2020. Disruption of membrane cholesterol organization impairs the activity of PIEZO1 channel clusters. J. Gen. Physiol. 152:e201912515
    [Google Scholar]
  82. Rode B, Shi J, Endesh N, Drinkhill MJ, Webster PJ et al. 2017. Piezo1 channels sense whole body physical activity to reset cardiovascular homeostasis and enhance performance. Nat. Commun. 8:350
    [Google Scholar]
  83. Romero LO, Massey AE, Mata-Daboin AD, Sierra-Valdez FJ, Chauhan SC et al. 2019. Dietary fatty acids fine-tune Piezo1 mechanical response. Nat. Commun. 10:1200
    [Google Scholar]
  84. Saotome K, Murthy SE, Kefauver JM, Whitwam T, Patapoutian A, Ward AB. 2018. Structure of the mechanically activated ion channel Piezo1. Nature 554:481–86
    [Google Scholar]
  85. Schneider ER, Mastrotto M, Laursen WJ, Schulz VP, Goodman JB et al. 2014. Neuronal mechanism for acute mechanosensitivity in tactile-foraging waterfowl. PNAS 111:14941–46
    [Google Scholar]
  86. Servin-Vences MR, Moroni M, Lewin GR, Poole K. 2017. Direct measurement of TRPV4 and PIEZO1 activity reveals multiple mechanotransduction pathways in chondrocytes. eLife 6:e21074
    [Google Scholar]
  87. Shen B, Tasdogan A, Ubellacker JM, Zhang J, Nosyreva ED et al. 2021. A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. Nature 591:438–44
    [Google Scholar]
  88. Song Y, Li D, Farrelly O, Miles L, Li F et al. 2019. The mechanosensitive ion channel Piezo inhibits axon regeneration. Neuron 102:373–89
    [Google Scholar]
  89. Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C 1994. A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368:26568
    [Google Scholar]
  90. Sun W, Chi S, Li Y, Ling S, Tan Y et al. 2019. The mechanosensitive Piezo1 channel is required for bone formation. eLife 8:e47454
    [Google Scholar]
  91. Sun Y, Li M, Liu G, Zhang X, Zhi L et al. 2020. The function of Piezo1 in colon cancer metastasis and its potential regulatory mechanism. J. Cancer Res. Clin. Oncol. 146:1139–52
    [Google Scholar]
  92. Syeda R, Florendo MN, Cox CD, Kefauver JM, Santos JS et al. 2016. Piezo1 channels are inherently mechanosensitive. Cell Rep 17:1739–46
    [Google Scholar]
  93. Syeda R, Xu J, Dubin AE, Coste B, Mathur J et al. 2015. Chemical activation of the mechanotransduction channel Piezo1. eLife 4:e07369
    [Google Scholar]
  94. Szczot M, Liljencrantz J, Ghitani N, Barik A, Lam R et al. 2018. PIEZO2 mediates injury-induced tactile pain in mice and humans. Sci. Transl. Med. 10:eaat9892
    [Google Scholar]
  95. Teng J, Loukin S, Anishkin A, Kung C. 2015. The force-from-lipid (FFL) principle of mechanosensitivity, at large and in elements. Pflugers Arch 467:27–37
    [Google Scholar]
  96. Velasco-Estevez M, Mampay M, Boutin H, Chaney A, Warn P et al. 2018. Infection augments expression of mechanosensing Piezo1 channels in amyloid plaque-reactive astrocytes. Front. Aging Neurosci. 10:332
    [Google Scholar]
  97. Venkatachalam K, Montell C. 2007. TRP channels. Annu. Rev. Biochem. 76:387–417
    [Google Scholar]
  98. Wang L, Zhou H, Zhang M, Liu W, Deng T et al. 2019. Structure and mechanogating of the mammalian tactile channel PIEZO2. Nature 573:225–29
    [Google Scholar]
  99. Wang SP, Cao S, Arhatte M, Li D, Shi Y et al. 2020. Adipocyte Piezo1 mediates obesogenic adipogenesis through the FGF1/FGFR1 signaling pathway in mice. Nat. Commun. 11:2303
    [Google Scholar]
  100. Wang Y, Chi S, Guo H, Li G, Wang L et al. 2018. A lever-like transduction pathway for long-distance chemical- and mechano-gating of the mechanosensitive Piezo1 channel. Nat. Commun. 9:1300
    [Google Scholar]
  101. Wetzel C, Pifferi S, Picci C, Gök C, Hoffmann D et al. 2017. Small-molecule inhibition of STOML3 oligomerization reverses pathological mechanical hypersensitivity. Nat. Neurosci. 20:209–18
    [Google Scholar]
  102. Woo SH, Lukacs V, de Nooij JC, Zaytseva D, Criddle CR et al. 2015. Piezo2 is the principal mechanotransduction channel for proprioception. Nat. Neurosci. 18:1756–62
    [Google Scholar]
  103. Woo SH, Ranade S, Weyer AD, Dubin AE, Baba Y et al. 2014. Piezo2 is required for Merkel-cell mechanotransduction. Nature 509:622–26
    [Google Scholar]
  104. Wu J, Lewis AH, Grandl J. 2017. Touch, tension, and transduction—the function and regulation of Piezo ion channels. Trends Biochem. Sci. 42:57–71
    [Google Scholar]
  105. Wu J, Young M, Lewis AH, Martfeld AN, Kalmeta B, Grandl J. 2017. Inactivation of mechanically activated Piezo1 ion channels is determined by the C-terminal extracellular domain and the inner pore helix. Cell Rep 21:2357–66
    [Google Scholar]
  106. Xiao B. 2020. Levering mechanically activated Piezo channels for potential pharmacological intervention. Annu. Rev. Pharmacol. Toxicol. 60:195–218
    [Google Scholar]
  107. Yang X-N, Lu Y-P, Liu J-J, Huang J-K, Liu Y-P et al. 2014. Piezo1 is as a novel trefoil factor family 1 binding protein that promotes gastric cancer cell mobility in vitro. Dig. Dis. Sci. 59:1428–35
    [Google Scholar]
  108. Zarychanski R, Schulz VP, Houston BL, Maksimova Y, Houston DS et al. 2012. Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis. Blood 120:1908–15
    [Google Scholar]
  109. Zeng W-Z, Marshall KL, Min S, Saou I, Chapleau MW et al. 2018. PIEZOs mediate neuronal sensing of blood pressure and the baroreceptor reflex. Science 362:464–67
    [Google Scholar]
  110. Zhang J, Zhou Y, Huang T, Wu F, Liu L et al. 2018. PIEZO1 functions as a potential oncogene by promoting cell proliferation and migration in gastric carcinogenesis. Mol. Carcinog. 57:1144–55
    [Google Scholar]
  111. Zhang W, Cheng LE, Kittelmann M, Li J, Petkovic M et al. 2016. Ankyrin repeats convey force to gate the NOMPC mechanotransduction channel. Cell 162:1391–403
    [Google Scholar]
  112. Zhao C, Sun Q, Tang L, Cao Y, Nourse JL et al. 2019. Mechanosensitive ion channel Piezo1 regulates diet-induced adipose inflammation and systemic insulin resistance. Front. Endocrinol. 10:373
    [Google Scholar]
  113. Zhao Q, Wu K, Geng J, Chi S, Wang Y et al. 2016. Ion permeation and mechanotransduction mechanisms of mechanosensitive piezo channels. Neuron 89:1248–63
    [Google Scholar]
  114. Zheng W, Gracheva EO, Bagriantsev SN. 2019. A hydrophobic gate in the inner pore helix is the major determinant of inactivation in mechanosensitive Piezo channels. eLife 8:e44003
    [Google Scholar]
  115. Zhou T, Gao B, Fan Y, Liu Y, Feng S et al. 2020. Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of NFAT-YAP1-β-catenin. eLife 9:e52779
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-093020-120939
Loading
/content/journals/10.1146/annurev-neuro-093020-120939
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error