1932

Abstract

This review focuses on recent advances in process-based numerical models of the impact of extreme storms on sandy coasts. Driven by larger-scale models of meteorology and hydrodynamics, these models simulate morphodynamics across the Sallenger storm-impact scale, including swash,collision, overwash, and inundation. Models are becoming both wider (as more processes are added) and deeper (as detailed physics replaces earlier parameterizations). Algorithms for wave-induced flows and sediment transport under shoaling waves are among the recent developments. Community and open-source models have become the norm. Observations of initial conditions (topography, land cover, and sediment characteristics) have become more detailed, and improvements in tropical cyclone and wave models provide forcing (winds, waves, surge, and upland flow) that is better resolved and more accurate, yielding commensurate improvements in model skill. We foresee that future storm-impact models will increasingly resolve individual waves, apply data assimilation, and be used in ensemble modeling modes to predict uncertainties.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-marine-032221-090215
2022-01-03
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/marine/14/1/annurev-marine-032221-090215.html?itemId=/content/journals/10.1146/annurev-marine-032221-090215&mimeType=html&fmt=ahah

Literature Cited

  1. Abreu T, Silva PA, Sancho F, Temperville A 2010. Analytical approximate wave form for asymmetric waves. Coast. Eng. 57:656–67
    [Google Scholar]
  2. Albatal A, Wadman H, Stark N, Bilici C, McNinch J. 2019. Investigation of spatial and short-term temporal nearshore sandy sediment strength using a portable free fall penetrometer. Coast. Eng. 143:21–37
    [Google Scholar]
  3. Alexander PS, Holman RA. 2004. Quantification of nearshore morphology based on video imaging. Mar. Geol. 208:101–11
    [Google Scholar]
  4. Amoudry LO, Souza AJ. 2011. Deterministic coastal morphological and sediment transport modeling: a review and discussion. Rev. Geophys. 49:RG2002
    [Google Scholar]
  5. Anarde K, Figlus J, Sous D, Tissier M. 2020. Transformation of infragravity waves during hurricane overwash. J. Mar. Sci. Eng. 8:545
    [Google Scholar]
  6. Andrews DG, Mcintyre ME. 1978. An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech. 89:609–46
    [Google Scholar]
  7. Arcemet GJ Jr., Schneider VR. 1989. Guide for selecting Manning's roughness coefficients for natural channels and flood plains Water Supply Pap. 2339, US Geol. Surv Denver, CO:
  8. Ardhuin F, Gille ST, Menemenlis D, Rocha CB, Rascle N et al. 2017. Small-scale open ocean currents have large effects on wind wave heights. J. Geophys. Res. Oceans 122:4500–17
    [Google Scholar]
  9. Ardhuin F, Rascle N, Belibassakis KA. 2008. Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Model 20:35–60
    [Google Scholar]
  10. Ashton AD, Murray AB. 2006. High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits, and capes. J. Geophys. Res. Earth Surf. 111:F04011
    [Google Scholar]
  11. Ashton AD, Murray AB, Arnoult O. 2001. Formation of coastline features by large-scale instabilities induced by high-angle waves. Nature 414:296–300
    [Google Scholar]
  12. Baar AW, Boechat Albernaz M, van Dijk WM, Kleinhans MG. 2019. Critical dependence of morphodynamic models of fluvial and tidal systems on empirical downslope sediment transport. Nat. Commun. 10:4903
    [Google Scholar]
  13. Bailard JA, Inman DL. 1981. An energetics bedload model for a plane sloping beach: local transport. J. Geophys. Res. Oceans 86:2035–43
    [Google Scholar]
  14. Bakhtyar R, Maitaria K, Velissariou P, Trimble B, Mashriqui H et al. 2020. A new 1D/2D coupled modeling approach for a riverine-estuarine system under storm events: application to Delaware River Basin. J. Geophys. Res. Oceans 125:e2019JC015822
    [Google Scholar]
  15. Bao J-W, Wilczak JM, Choi J-K, Kantha LH. 2000. Numerical simulations of air-sea interaction under high wind conditions using a coupled model: a study of hurricane development. Mon. Weather Rev. 128:2190–210
    [Google Scholar]
  16. Battjes JA, Bakkenes HJ, Janssen TT, van Dongeren AR. 2004. Shoaling of subharmonic gravity waves. J. Geophys. Res. Oceans 109:C02009
    [Google Scholar]
  17. Bauer P, Thorpe A, Brunet G 2015. The quiet revolution of numerical weather prediction. Nature 525:47–55
    [Google Scholar]
  18. Baumann J, Chaumillon E, Bertin X, Schneider J-L, Guillot B, Schmutz M. 2017. Importance of infragravity waves for the generation of washover deposits. Mar. Geol. 391:20–35
    [Google Scholar]
  19. Bertin X, de Bakker A, van Dongeren A, Coco G, André G et al. 2018. Infragravity waves: from driving mechanisms to impacts. Earth-Sci. Rev. 177:774–99
    [Google Scholar]
  20. Bertin X, Mendes D, Martins K, Fortunato AB, Lavaud L. 2019. The closure of a shallow tidal inlet promoted by infragravity waves. Geophys. Res. Lett. 46:6804–10
    [Google Scholar]
  21. Beudin A, Kalra TS, Ganju NK, Warner JC. 2017. Development of a coupled wave-flow-vegetation interaction model. Comput. Geosci. 100:76–86
    [Google Scholar]
  22. Billson O, Russell P, Davidson M 2019. Storm waves at the shoreline: When and where are infragravity waves important?. J. Mar. Sci. Eng. 7:139
    [Google Scholar]
  23. Birrien F, Castelle B, Marieu V, Dubarbier B. 2013. On a data-model assimilation method to inverse wave-dominated beach bathymetry using heterogeneous video-derived observations. Ocean Eng 73:126–38
    [Google Scholar]
  24. Black PG, D'Asaro EA, Drennan WM, French JR, Niiler PP et al. 2007. Air-sea exchange in hurricanes: synthesis of observations from the coupled boundary layer air-sea transfer experiment. Bull. Am. Meteorol. Soc. 88:357–74
    [Google Scholar]
  25. Blake ES, Kimberlain TB, Berg RJ, Cangialosi JP, Beven JL II 2013. Tropical cyclone report: Hurricane Sandy (AL182012), 22–29 October 2012 Rep., Natl. Hurric. Cent., Miami
  26. Bosboom J, Reniers AJHM. 2014. Displacement-based error metrics for morphodynamic models. Adv. Geosci. 39:37–43
    [Google Scholar]
  27. Bosboom J, Reniers AJHM, Luijendijk AP. 2014. On the perception of morphodynamic model skill. Coast. Eng. 94:112–25
    [Google Scholar]
  28. Braun SA, Montgomery MT, Pu Z. 2006. High-resolution simulation of Hurricane Bonnie (1998). Part I: the organization of eyewall vertical motion. J. Atmos. Sci. 63:19–42
    [Google Scholar]
  29. Brodie KL, Bruder BL, Slocum RK, Spore NJ. 2019. Simultaneous mapping of coastal topography and bathymetry from a lightweight multicamera UAS. IEEE Trans. Geosci. Remote Sens. 57:6844–64
    [Google Scholar]
  30. Brodie KL, Palmsten ML, Hesser TJ, Dickhudt PJ, Raubenheimer B et al. 2018. Evaluation of video-based linear depth inversion performance and applications using altimeters and hydrographic surveys in a wide range of environmental conditions. Coast. Eng. 136:147–60
    [Google Scholar]
  31. Bruun P. 1954. Coast erosion and the development of beach profiles Tech. Memo 44, Beach Eros. Board, US Army Corps Eng. Washington, DC:
  32. Bruun P. 1962. Sea-level rise as a cause of shore erosion. J. Waterw. Harb. Div. 88:117–32
    [Google Scholar]
  33. Bryant KM, Akbar M. 2016. An exploration of wind stress calculation techniques in hurricane storm surge modeling. J. Mar. Sci. Eng 4:58
    [Google Scholar]
  34. Buijsman MC, Ruggiero P, Kaminsky GM 2001. Sensitivity of shoreline change predictions to wave climate variability along the southwest Washington coast, USA. Coastal Dynamics '01 H Hanson, M Larson 617–26 Reston, VA: Am. Soc. Civil Eng.
    [Google Scholar]
  35. Buscombe D, Ritchie A 2018. Landscape classification with deep neural networks. Geosciences 8:244
    [Google Scholar]
  36. Callaghan DP, Saint-Cast F, Nielsen P, Baldock TE. 2006. Numerical solutions of the sediment conservation law; a review and improved formulation for coastal morphological modelling. Coast. Eng. 53:557–71
    [Google Scholar]
  37. Carr JA, D'Odorico P, McGlathery KJ, Wiberg PL 2012. Modeling the effects of climate change on eelgrass stability and resilience: future scenarios and leading indicators of collapse. Mar. Ecol. Prog. Ser. 448:289–301
    [Google Scholar]
  38. Casulli V. 1999. A semi-implicit finite difference method for non-hydrostatic, free-surface flows. Int. J. Numer. Methods Fluids 30:425–40
    [Google Scholar]
  39. Cavaleri L, Abdalla S, Benetazzo A, Bertotti L, Bidlot J-R et al. 2018. Wave modelling in coastal and inner seas. Prog. Oceanogr. 167:164–233
    [Google Scholar]
  40. Cavaleri L, Barbariol F, Benetazzo A. 2020. Wind-wave modeling: where we are, where to go. J. Mar. Sci. Eng 8:260
    [Google Scholar]
  41. Chen C, Liu H, Beardsley RC. 2003. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries. J. Atmos. Ocean. Technol. 20:159–86
    [Google Scholar]
  42. Chen J-L, Shi F, Hsu T-J, Kirby JT. 2014. NearCoM-TVD—a quasi-3D nearshore circulation and sediment transport model. Coast. Eng. 91:200–12
    [Google Scholar]
  43. Chen S, Campbell TJ, Jin H, Gaberšek S, Hodur RM, Martin P 2010. Effect of two-way air-sea coupling in high and low wind speed regimes. Mon. Weather Rev. 138:3579–602
    [Google Scholar]
  44. Chiang Y-C, Hsiao S-S, Lin M-C. 2011. Improved technique for controlling oscillation of coastal morphological modeling system. J. Mar. Sci. Technol. 19:625–33
    [Google Scholar]
  45. Cienfuegos R, Barthélemy E, Bonneton P. 2006. A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part I: model development and analysis. Int. J. Numer. Methods Fluids 51:1217–53
    [Google Scholar]
  46. Cienfuegos R, Barthélemy E, Bonneton P. 2007. A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations. Part II: boundary conditions and validation. Int. J. Numer. Methods Fluids 53:1423–55
    [Google Scholar]
  47. Coco G, Zhou Z, van Maanen B, Olabarrieta M, Tinoco R, Townend I. 2013. Morphodynamics of tidal networks: advances and challenges. Mar. Geol. 346:1–16
    [Google Scholar]
  48. Cohn N, Hoonhout BM, Goldstein EB, de Vries S, Moore LJ et al. 2019a. Exploring marine and aeolian controls on coastal foredune growth using a coupled numerical model. J. Mar. Sci. Eng 7:13
    [Google Scholar]
  49. Cohn N, Ruggiero P, García-Medina G, Anderson D, Serafin KA, Biel R 2019b. Environmental and morphologic controls on wave-induced dune response. Geomorphology 329:108–28
    [Google Scholar]
  50. Collins AM, Brodie KL, Bak SA, Hesser TJ, Farthing MW et al. 2020. Bathymetric inversion and uncertainty estimation from synthetic surf-zone imagery with machine learning. Remote Sens 12:3364
    [Google Scholar]
  51. Craik ADD, Leibovich S. 1976. A rational model for Langmuir circulations. J. Fluid Mech. 73:401–26
    [Google Scholar]
  52. Curcic M, Haus BK. 2020. Revised estimates of ocean surface drag in strong winds. Geophys. Res. Lett. 47:e2020GL087647
    [Google Scholar]
  53. Dalrymple RA, Kirby JT, Hwang PA. 1984. Wave diffraction due to areas of energy dissipation. J. Waterway Port Coast. Ocean Eng. 110:67–79
    [Google Scholar]
  54. D'Asaro EA, Black P, Centurioni L, Harr P, Jayne S et al. 2011. Typhoon-ocean interaction in the western North Pacific: part 1. Oceanography 24:424–31
    [Google Scholar]
  55. Davidson MA, Lewis RP, Turner IL. 2010. Forecasting seasonal to multi-year shoreline change. Coast. Eng. 57:620–29
    [Google Scholar]
  56. Davidson MA, Splinter KD, Turner IL. 2013. A simple equilibrium model for predicting shoreline change. Coast. Eng. 73:191–202
    [Google Scholar]
  57. Davidson SG, Hesp PA, da Silva GM. 2020. Controls on dune scarping. Prog. Phys. Geogr. Earth Environ. 44:923–47
    [Google Scholar]
  58. Davidson-Arnott R, Bauer B, Houser C. 2019. Introduction to Coastal Processes and Geomorphology Cambridge, UK: Cambridge Univ. Press. , 2nd ed..
  59. Davies AG, Robins PE. 2017. Residual flow, bedforms and sediment transport in a tidal channel modelled with variable bed roughness. Geomorphology 295:855–72
    [Google Scholar]
  60. Davis C, Wang W, Chen SS, Chen Y, Corbosiero K et al. 2008. Prediction of landfalling hurricanes with the Advanced Hurricane WRF model. Mon. Weather Rev. 136:1990–2005
    [Google Scholar]
  61. de Ridder MP, Smit PB, van Dongeren AR, McCall RT, Nederhoff K, Reniers AJHM. 2021. Efficient two-layer non-hydrostatic wave model with accurate dispersive behaviour. Coast. Eng. 164:103808
    [Google Scholar]
  62. de Swart HE, Zimmerman JTF. 2009. Morphodynamics of tidal inlet systems. Annu. Rev. Fluid Mech. 41:203–29
    [Google Scholar]
  63. de Vet PLM, McCall RT, den Bieman JP, Stive MJF, van Ormondt M. 2015. Modelling dune erosion, overwash and breaching at Fire Island (NY) during Hurricane Sandy. The Proceedings of the Coastal Sediments 2015 P Wang, JD Rosati, J Cheng Singapore: World Sci https://doi.org/10.1142/9789814689977_0006
    [Crossref] [Google Scholar]
  64. de Vriend HJ, Zyserman J, Nicholson J, Roelvink JA, Péchon P, Southgate HN. 1993. Medium-term 2DH coastal area modelling. Coast. Eng. 21:193–224
    [Google Scholar]
  65. Dean RG. 1991. Equilibrium beach profiles: characteristics and applications. J. Coast. Res. 7:53–84
    [Google Scholar]
  66. Debreu L, Marchesiello P, Penven P, Cambon G. 2012. Two-way nesting in split-explicit ocean models: algorithms, implementation and validation. Ocean Model49–501–21
    [Google Scholar]
  67. DeMaria M, Mainelli M, Shay LK, Knaff JA, Kaplan J. 2005. Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Weather Forecast 20:531–43
    [Google Scholar]
  68. Dingemans MW. 1997. Water Wave Propagation Over Uneven Bottoms: Part 1 – Linear Wave Propagation Singapore: World Sci.
  69. Doering JC, Bowen AJ. 1995. Parametrization of orbital velocity asymmetries of shoaling and breaking waves using bispectral analysis. Coast. Eng. 26:15–33
    [Google Scholar]
  70. Doering JC, Elfrink B, Hanes DM, Ruessink G. 2000. Parameterization of velocity skewness under waves and its effect on cross-shore sediment transport. Coast. Eng. Proc. 27:1383–97
    [Google Scholar]
  71. Doyle JD, Hodur R, Chen S, Jin Y, Msokaitis J et al. 2014. Tropical cyclone prediction using COAMPS-TC. Oceanography 27:3104–15
    [Google Scholar]
  72. Doyle JD, Jin Y, Hodur RM, Chen S, Jin H et al. 2012. Real-time tropical cyclone prediction using COAMPS-TC. Adv. Geosci. 28:15–28
    [Google Scholar]
  73. Drake TG, Calantoni J. 2001. Discrete particle model for sheet flow sediment transport in the nearshore. J. Geophys. Res. Oceans 106:19859–68
    [Google Scholar]
  74. Drost EJF, Cuttler MVW, Lowe RJ, Hansen JE. 2019. Predicting the hydrodynamic response of a coastal reef-lagoon system to a tropical cyclone using phase-averaged and surfbeat-resolving wave models. Coast. Eng. 152:103525
    [Google Scholar]
  75. Durán O, Moore LJ 2013. Vegetation controls on the maximum size of coastal dunes. PNAS 110:17217–22
    [Google Scholar]
  76. Elgar S, Guza RT. 1985. Observations of bispectra of shoaling surface gravity waves. J. Fluid Mech. 161:425–48
    [Google Scholar]
  77. Exner FM. 1920. Zur Physik der Dünen. Akad. Wiss. Wien Math. Naturwiss. Klasse 129:929–52
    [Google Scholar]
  78. Exner FM. 1925. Über die Wechselwirkung zwischen Wasser und Geschiebe in Flüssen. Akad. Wiss. Wien Math. Naturwiss. Klasse 135:165–204
    [Google Scholar]
  79. Ezer T, Atkinson LP, Tuleya R. 2017. Observations and operational model simulations reveal the impact of Hurricane Matthew (2016) on the Gulf Stream and coastal sea level. Dyn. Atmos. Oceans 80:124–38
    [Google Scholar]
  80. Fairall CW, Banner ML, Peirson WL, Asher W, Morison RP. 2009. Investigation of the physical scaling of sea spray spume droplet production. J. Geophys. Res. Oceans 114:C10001
    [Google Scholar]
  81. Fernández-Mora A, Calvete D, Falqués A, de Swart HE. 2015. Onshore sandbar migration in the surf zone: new insights into the wave-induced sediment transport mechanisms. Geophys. Res. Lett. 42:2869–77
    [Google Scholar]
  82. Ferreira CM, Irish JL, Olivera F. 2014. Uncertainty in hurricane surge simulation due to land cover specification. J. Geophys. Res. Oceans 119:1812–27
    [Google Scholar]
  83. Foda MA, Mei CC. 1981. Nonlinear excitation of long-trapped waves by a group of short swells. J. Fluid Mech 111:319–45
    [Google Scholar]
  84. Foster DL, Bowen AJ, Holman RA, Natoo P. 2006. Field evidence of pressure gradient induced incipient motion. J. Geophys. Res. Oceans 111:C05004
    [Google Scholar]
  85. Fringer OB, Dawson CN, He R, Ralston DK, Zhang YJ. 2019. The future of coastal and estuarine modeling: findings from a workshop. Ocean Model 143:101458
    [Google Scholar]
  86. Fringer OB, Gerritsen M, Street RL. 2006. An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator. Ocean Model 14:139–73
    [Google Scholar]
  87. Fuhrman DR, Schløer S, Sterner J. 2013. RANS-based simulation of turbulent wave boundary layer and sheet-flow sediment transport processes. Coast. Eng. 73:151–66
    [Google Scholar]
  88. Galappatti G, Vreugdenhil CB. 1985. A depth-integrated model for suspended sediment transport. J. Hydraul. Res. 23:359–77
    [Google Scholar]
  89. Gallagher EL, Elgar S, Guza RT. 1998. Observations of sand bar evolution on a natural beach. J. Geophys. Res. Oceans 103:3203–15
    [Google Scholar]
  90. Ganju NK, Lentz SJ, Kirincich AR, Farrar JT. 2011. Complex mean circulation over the inner shelf south of Martha's Vineyard revealed by observations and a high-resolution model. J. Geophys. Res. Oceans 116:C10036
    [Google Scholar]
  91. Ghorbanidehno H, Lee J, Farthing M, Hesser T, Kitanidis PK, Darve EF. 2019. Novel data assimilation algorithm for nearshore bathymetry. J. Atmos. Ocean. Technol. 36:699–715
    [Google Scholar]
  92. Ginis I, Chen X, Hara T 2021. Impact of shoaling waves on wind stress and drag coefficient during tropical cyclone landfall Paper presented at the 34th Conference on Hurricanes and Tropical Meteorology, virtual May 10–14
  93. Goerss JS. 2007. Prediction of consensus tropical cyclone track forecast error. Mon. Weather Rev. 135:1985–93
    [Google Scholar]
  94. Goff JA, Allison MA, Gulick SPS. 2010. Offshore transport of sediment during cyclonic storms: Hurricane Ike (2008), Texas Gulf Coast, USA. Geology 38:351–54
    [Google Scholar]
  95. Goff JA, Swartz JM, Gulick SPS, Dawson CN, de Alegria-Arzaburu AR 2019. An outflow event on the left side of Hurricane Harvey: erosion of barrier sand and seaward transport through Aransas Pass, Texas. Geomorphology 334:44–57
    [Google Scholar]
  96. Gori A, Lin N, Smith J. 2020. Assessing compound flooding from landfalling tropical cyclones on the North Carolina coast. Water Resour. Res. 56:e2019WR026788
    [Google Scholar]
  97. Gorlay MR. 1968. Beach and dune erosion tests Rep. M935/M936, Delft Hydraul. Lab Delft, Neth:.
  98. Goslin J, Clemmensen LB. 2017. Proxy records of Holocene storm events in coastal barrier systems: storm-wave induced markers. Quat. Sci. Rev. 174:80–119
    [Google Scholar]
  99. Grant WD, Madsen OS. 1979. Combined wave and current interaction with a rough bottom. J. Geophys. Res. Oceans 84:1797–808
    [Google Scholar]
  100. Hamill TM, Whitaker JS, Kleist DT, Fiorino M, Benjamin SG. 2011. Predictions of 2010’s tropical cyclones using the GFS and ensemble-based data assimilation methods. Mon. Weather Rev. 139:3243–47
    [Google Scholar]
  101. Han J, Huang L. 2018. Numerical experiments on stagnation points influenced by the Three Gorges Dam in the Yangtze Estuary. Water Supply 18:1032–40
    [Google Scholar]
  102. Hapke CJ, Nelson TR, Henderson RE, Brenner OT, Miselis JL. 2017. Morphologic evolution of the wilderness area breach at Fire Island, New York—2012–15 Open-File Rep. 2017-1116 US Geol. Surv Reston, VA:
  103. Harley MD, Kinsela MA, Sánchez-García E, Vos K. 2019. Shoreline change mapping using crowd-sourced smartphone images. Coast. Eng. 150:175–89
    [Google Scholar]
  104. Hartanto IM, Beevers L, Popescu I, Wright NG. 2011. Application of a coastal modelling code in fluvial environments. Environ. Model. Softw. 26:1685–95
    [Google Scholar]
  105. Harter C, Figlus J. 2017. Numerical modeling of the morphodynamic response of a low-lying barrier island beach and foredune system inundated during Hurricane Ike using XBeach and CSHORE. Coast. Eng. 120:64–74
    [Google Scholar]
  106. Hegermiller CA, Warner JC, Olabarrieta M, Sherwood CR. 2019. Wave-current interaction between Hurricane Matthew wave fields and the Gulf Stream. J. Phys. Oceanogr. 49:2883–900
    [Google Scholar]
  107. Hemminga MA, Duarte CM. 2000. Seagrass Ecology Cambridge, UK: Cambridge Univ. Press
  108. Henderson SM, Bowen AJ. 2002. Observations of surf beat forcing and dissipation. J. Geophys. Res. Oceans 107:14-1–10
    [Google Scholar]
  109. Héquette A, Ruz M-H, Zemmour A, Marin D, Cartier A, Sipka V. 2019. Alongshore variability in coastal dune erosion and post-storm recovery, northern coast of France. J. Coast. Res. Spec. Issue 88:25–45
    [Google Scholar]
  110. Herbers THC, Elgar S, Guza RT. 1994. Infragravity-frequency (0.005–0.05 Hz) motions on the shelf. Part I: forced waves. J. Phys. Oceanogr. 24:917–27
    [Google Scholar]
  111. Hervouet J-M. 2007. Hydrodynamics of Free Surface Flows: Modelling with the Finite Element Method West Sussex, UK: Wiley & Sons
  112. Hoefel F, Elgar S. 2003. Wave-induced sediment transport and sandbar migration. Science 299:1885–87
    [Google Scholar]
  113. Holman R, Haller MC. 2013. Remote sensing of the nearshore. Annu. Rev. Mar. Sci. 5:95–113
    [Google Scholar]
  114. Holman R, Plant N, Holland T. 2013. cBathy: a robust algorithm for estimating nearshore bathymetry. J. Geophys. Res. Oceans 118:2595–609
    [Google Scholar]
  115. Holthuijsen LH. 2007. Waves in Oceanic and Coastal Waters Cambridge, UK: Cambridge Univ. Press
  116. Holthuijsen LH, Tolman HL. 1991. Effects of the Gulf Stream on ocean waves. J. Geophys. Res. Oceans 96:12755–71
    [Google Scholar]
  117. Hoonhout BM, de Vries S. 2016. A process-based model for aeolian sediment transport and spatiotemporal varying sediment availability. J. Geophys. Res. Earth Surf. 121:1555–75
    [Google Scholar]
  118. Housego R, Raubenheimer B, Elgar S, Gorrell L, Wadman H et al. 2018. Barrier Island groundwater. Coast. Eng. Proc 36:risk.10
    [Google Scholar]
  119. Hsu T-J, Elgar S, Guza RT. 2006. Wave-induced sediment transport and onshore sandbar migration. Coast. Eng. 53:817–24
    [Google Scholar]
  120. Hsu T-J, Hanes DM. 2004. Effects of wave shape on sheet flow sediment transport. J. Geophys. Res. Oceans 109:C05025
    [Google Scholar]
  121. Huizer S, Radermacher M, de Vries S, Oude Essink GHP, Bierkens MFP 2018. Impact of coastal forcing and groundwater recharge on the growth of a fresh groundwater lens in a mega-scale beach nourishment. Hydrol. Earth Syst. Sci. 22:1065–80
    [Google Scholar]
  122. Isobe M, Horikawa K. 1982. Study on water particle velocities of shoaling and breaking waves. Coast. Eng. Jpn. 25:109–23
    [Google Scholar]
  123. Janssen TT, Battjes JA, van Dongeren AR. 2003. Long waves induced by short-wave groups over a sloping bottom. J. Geophys. Res. Oceans 108:3252
    [Google Scholar]
  124. Johnson HK, Zyserman JA. 2002. Controlling spatial oscillations in bed level update schemes. Coast. Eng. 46:109–26
    [Google Scholar]
  125. Kaergaard K, Fredsoe J. 2013. A numerical shoreline model for shorelines with large curvature. Coast. Eng. 74:19–32
    [Google Scholar]
  126. Kalra TS, Sherwood CR, Warner JC, Rafati Y, Hsu T-J 2019. Investigating bedload transport under asymmetrical waves using a coupled ocean-wave model. Coastal Sediments 2019 P Wang, JD Rosati, M Vallee 591–604 Singapore: World Sci https://doi.org/10.1142/9789811204487_0052
    [Crossref] [Google Scholar]
  127. Kaveh K, Reisenbüchler M, Lamichhane S, Liepert T, Nguyen ND et al. 2019. A comparative study of comprehensive modeling systems for sediment transport in a curved open channel. Water 11:1779
    [Google Scholar]
  128. Kennedy AB, Gravois U, Zachry BC, Westerink JJ, Hope ME et al. 2011. Origin of the Hurricane Ike forerunner surge. Geophys. Res. Lett. 38:L08608
    [Google Scholar]
  129. Kim Y, Cheng Z, Hsu T-J, Chauchat J. 2018. A numerical study of sheet flow under monochromatic nonbreaking waves using a free surface resolving eulerian two-phase flow model. J. Geophys. Res. Oceans 123:4693–719
    [Google Scholar]
  130. Kim Y, Mieras RS, Cheng Z, Anderson D, Hsu T-J et al. 2019. A numerical study of sheet flow driven by velocity and acceleration skewed near-breaking waves on a sandbar using SedWaveFoam. Coast. Eng. 152:103526
    [Google Scholar]
  131. Kombiadou K, Costas S, Roelvink D. 2021. Simulating destructive and constructive morphodynamic processes in steep beaches. J. Mar. Sci. Eng. 9:86
    [Google Scholar]
  132. Kranenburg WM, Ribberink JS, Schretlen JJLM, Uittenbogaard RE. 2013. Sand transport beneath waves: the role of progressive wave streaming and other free surface effects. J. Geophys. Res. Earth Surf. 118:122–39
    [Google Scholar]
  133. Kranenburg WM, Ribberink JS, Uittenbogaard RE, Hulscher SJMH. 2012. Net currents in the wave bottom boundary layer: on waveshape streaming and progressive wave streaming. J. Geophys. Res. Earth Surf. 117:F03005
    [Google Scholar]
  134. Kumar N, Voulgaris G, Warner JC, Olabarrieta M. 2012. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications. Ocean Model 47:Suppl. C65–95
    [Google Scholar]
  135. Kurapov AL, Özkan-Haller HT. 2013. Bathymetry correction using an adjoint component of a coupled nearshore wave-circulation model: tests with synthetic velocity data. J. Geophys. Res. Oceans 118:4673–88
    [Google Scholar]
  136. Lai Z, Chen C, Cowles GW, Beardsley RC. 2010. A nonhydrostatic version of FVCOM: 1. validation experiments. J. Geophys. Res. Oceans 115:C11010
    [Google Scholar]
  137. Lane EM, Restrepo JM, McWilliams JC. 2007. Wave-current interaction: a comparison of radiation-stress and vortex-force representations. J. Phys. Oceanogr. 37:1122–41
    [Google Scholar]
  138. Larson M, Hanson H, Kraus NC. 1997. Analytical solutions of one-line model for shoreline change near coastal structures. J. Waterw. Port Coast. Ocean Eng. 123:180–91
    [Google Scholar]
  139. Lazarus ED, Goldstein EB. 2019. Is there a bulldozer in your model?. J. Geophys. Res. Earth Surf. 124:696–99
    [Google Scholar]
  140. Leijnse T, van Ormondt M, Nederhoff K, van Dongeren A. 2021. Modeling compound flooding in coastal systems using a computationally efficient reduced-physics solver: including fluvial, pluvial, tidal, wind- and wave-driven processes. Coast. Eng. 163:103796
    [Google Scholar]
  141. Lennon G. 1991. The nature and causes of hurricane-induced ebb scour channels on a developed shoreline. J. Coast. Res. Spec Issue 8:237–48
    [Google Scholar]
  142. Lesser GR, Roelvink JA, van Kester JATM, Stelling GS. 2004. Development and validation of a three-dimensional morphological model. Coast. Eng. 51:883–915
    [Google Scholar]
  143. Li M, Li W, Xie M, Xu T. 2020. Morphodynamic responses to the Hong Kong–Zhuhai–Macao Bridge in the Pearl River estuary, China. J. Coast. Res 37:168–78
    [Google Scholar]
  144. List JH. 1992. A model for the generation of two-dimensional surf beat. J. Geophys. Res. Oceans 97:5623–35
    [Google Scholar]
  145. Long JW, Plant NG. 2012. Extended Kalman Filter framework for forecasting shoreline evolution. Geophys. Res. Lett. 39:L13603
    [Google Scholar]
  146. Longuet-Higgins MS. 2005. On wave set-up in shoaling water with a rough sea bed. J. Fluid Mech. 527:217–34
    [Google Scholar]
  147. Longuet-Higgins MS, Stewart RW 1962. Radiation stress and mass transport in gravity waves, with application to ‘surf beats. .’ J. Fluid Mech. 13:481–504
    [Google Scholar]
  148. Longuet-Higgins MS, Stewart RW 1964. Radiation stresses in water waves; a physical discussion, with applications. Deep-Sea Res. . Oceanogr. Abstr. 11:529–62
    [Google Scholar]
  149. Luhar M, Coutu S, Infantes E, Fox S, Nepf H. 2010. Wave-induced velocities inside a model seagrass bed. J. Geophys. Res. Oceans 115:C12005
    [Google Scholar]
  150. Luhar M, Nepf HM. 2011. Flow-induced reconfiguration of buoyant and flexible aquatic vegetation. Limnol. Oceanogr. 56:2003–17
    [Google Scholar]
  151. Luijendijk AP, de Schipper MA, Ranasinghe R. 2019. Morphodynamic acceleration techniques for multi-timescale predictions of complex sandy interventions. J. Mar. Sci. Eng. 7:78
    [Google Scholar]
  152. Luijendijk AP, Hagenaars G, Ranasinghe R, Baart F, Donchyts G, Aarninkhof S. 2018. The state of the world's beaches. Sci. Rep. 8:6641
    [Google Scholar]
  153. Ma G, Kirby JT, Shi F. 2014. Non-Hydrostatic Wave Model NHWAVE: documentation and user's manual (version 2.0) Res. Rep. CACR-14-11, Cent. Appl. Coast. Res., Univ. Del. Newark:
  154. Machineni N, Sinha VSP, Singh P, Reddy NT. 2019. The impact of distributed landuse information in hydrodynamic model application in storm surge inundation. Estuar. Coast. Shelf Sci. 231:106466
    [Google Scholar]
  155. MacMahan JH, Thornton EB, Reniers AJHM. 2006. Rip current review. Coast. Eng. 53:191–208
    [Google Scholar]
  156. Malej M, Smith JM, Salgado-Dominguez G. 2015. Introduction to phase-resolving wave modeling with FUNWAVE Rep. ERDC/CHL CHETN-I-87 Eng. Res. Dev. Cent., US Army Corps Eng. Vicksburg, MS:
  157. Marks FD, Shay LK. 1998. Landfalling tropical cyclones. Bull. Am. Meteorol. Soc. 79:305–23
    [Google Scholar]
  158. Marshall J, Adcroft A, Hill C, Perelman L, Heisey C. 1997. A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. Oceans 102:5753–66
    [Google Scholar]
  159. Masselink G. 1995. Group bound long waves as a source of infragravity energy in the surf zone. Cont. Shelf Res. 15:1525–47
    [Google Scholar]
  160. Mattocks C, Forbes C. 2008. A real-time, event-triggered storm surge forecasting system for the state of North Carolina. Ocean Model 25:95–119
    [Google Scholar]
  161. McWilliams JC, Restrepo JM, Lane EM. 2004. An asymptotic theory for the interaction of waves and currents in coastal waters. J. Fluid Mech. 511:135–78
    [Google Scholar]
  162. Mei W, Pasquero C, Primeau F. 2012. The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophys. Res. Lett. 39:L07801
    [Google Scholar]
  163. Mendez FJ, Losada IJ. 2004. An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields. Coast. Eng. 51:103–18
    [Google Scholar]
  164. Mendoza A, Abad JD, Langendoen EJ, Wang D, Tassi P, Abderrezzak KEK. 2017. Effect of sediment transport boundary conditions on the numerical modeling of bed morphodynamics. J. Hydraul. Eng. 143:04016099
    [Google Scholar]
  165. Mercer D, Sheng J, Greatbatch RJ, Bobanović J. 2002. Barotropic waves generated by storms moving rapidly over shallow water. J. Geophys. Res. Oceans 107:16-1–17
    [Google Scholar]
  166. Miller JK, Dean RG. 2004. A simple new shoreline change model. Coast. Eng. 58:531–56
    [Google Scholar]
  167. Montaño J, Coco G, Antolínez JAA, Beuzen T, Bryan KR et al. 2020. Blind testing of shoreline evolution models. Sci. Rep. 10:2137
    [Google Scholar]
  168. Moon I-J, Kwon J-I, Lee J-C, Shim J-S, Kang SK et al. 2009. Effect of the surface wind stress parameterization on the storm surge modeling. Ocean Model 29:115–27
    [Google Scholar]
  169. Morgan JA, Kumar N, Horner-Devine AR, Ahrendt S, Istanbullouglu E, Bandaragoda C. 2020. The use of a morphological acceleration factor in the simulation of large-scale fluvial morphodynamics. Geomorphology 356:107088
    [Google Scholar]
  170. Munk WH. 1949. Surf beats. Eos Trans. AGU 30:849–54
    [Google Scholar]
  171. Murray AB. 2003. Contrasting the goals, strategies, and predictions associated with simplified numerical models and detailed simulations. Prediction in Geomorphology PR Wilcock, RM Iverson 151–65 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  172. Murray AB. 2007. Reducing model complexity for explanation and prediction. Geomorphology 90:178–91
    [Google Scholar]
  173. Murray AB, Thieler ER. 2004. A new hypothesis and exploratory model for the formation of large-scale inner-shelf sediment sorting and “rippled scour depressions. Cont. Shelf Res. 24:295–315
    [Google Scholar]
  174. Natl. Hurric. Cent 2020. National Hurricane Center forecast verification. National Hurricane Center. https://www.nhc.noaa.gov/verification/verify5.shtml
    [Google Scholar]
  175. Nepf HM. 2012. Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 44:123–42
    [Google Scholar]
  176. Nguyen DT, Jacobsen NG, Roelvink D. 2021. Development and validation of quasi-Eulerian mean three-dimensional equations of motion using the generalized Lagrangian mean method. J. Mar. Sci. Eng. 9:76
    [Google Scholar]
  177. Nicholson J, Broker I, Roelvink JA, Price D, Tanguy JM, Moreno L. 1997. Intercomparison of coastal area morphodynamic models. Coast. Eng. 31:97–123
    [Google Scholar]
  178. Nielsen P. 1992. Coastal Bottom Boundary Layers and Sediment Transport Singapore: World Sci.
  179. Nielsen P. 2006. Sheet flow sediment transport under waves with acceleration skewness and boundary layer streaming. Coast. Eng. 53:749–58
    [Google Scholar]
  180. NOPP (Natl. Oceanogr. Partnersh. Program) 2020. Predicting Hurricane Coastal Impacts, FY21-24 (CLOSED) Fund. Announc., NOPP Washington, DC: https://www.nopp.org/2020/predicting-hurricane-coastal-impacts-fy21-24
  181. Norheim CA, Herbers THC, Elgar S. 1998. Nonlinear evolution of surface wave spectra on a beach. J. Phys. Oceanogr. 28:1534–51
    [Google Scholar]
  182. Olabarrieta M, Valle-Levinson A, Martinez CJ, Pattiaratchi C, Shi L. 2017. Meteotsunamis in the northeastern Gulf of Mexico and their possible link to El Niño Southern Oscillation. Nat. Hazards 88:1325–46
    [Google Scholar]
  183. Olabarrieta M, Warner JC, Armstrong B, Zambon JB, He R. 2012. Ocean–atmosphere dynamics during Hurricane Ida and Nor'Ida: an application of the coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system. Ocean Model43–44112–37
    [Google Scholar]
  184. Over J-SR, Brown JA, Sherwood CR, Hegermiller CA, Wernette PA et al. 2021. A survey of storm-induced seaward-transport features observed during the 2019 and 2020 hurricane seasons. Shore Beach 89:23140
    [Google Scholar]
  185. Overton MF, Fisher JS. 1988. Simulation modeling of dune erosion. Coast. Eng. Proc. 28:1857–67
    [Google Scholar]
  186. Palmsten ML, Holman RA. 2011. Infiltration and instability in dune erosion. J. Geophys. Res. Oceans 116:C10030
    [Google Scholar]
  187. Paola C, Voller VR. 2005. A generalized Exner equation for sediment mass balance. J. Geophys. Res. Earth Surf. 110:F04014
    [Google Scholar]
  188. Pelnard-Considère R. 1957. Essai de théorie de l'évolution des formes de rivage en plages de sable et de galets. Les Énergies de la Mer: Compte Rendu des Quatrièmes Journées de l'Hydraulique; Paris 13, 14 et 15 Juin 1956, Vol. 1289–301 Paris: Soc. Hydrotech. Fr.
    [Google Scholar]
  189. Plant NG, Holland KT. 2011. Prediction and assimilation of surf-zone processes using a Bayesian network: part II: inverse models. Coast. Eng. 58:256–66
    [Google Scholar]
  190. Ponte RM. 1992. The sea level response of a stratified ocean to barometric pressure forcing. J. Phys. Oceanogr. 22:109–13
    [Google Scholar]
  191. Pringle WJ, Gonzalez-Lopez J, Joyce BR, Westerink JJ, van der Westhuysen AJ. 2019. Baroclinic coupling improves depth-integrated modeling of coastal sea level variations around Puerto Rico and the U.S. Virgin Islands. J. Geophys. Res. Oceans 124:2196–217
    [Google Scholar]
  192. Rafati Y, Hsu T-J, Elgar S, Raubenheimer B, Quataert E, van Dongeren A. 2021. Modeling the hydrodynamics and morphodynamics of sandbar migration events. Coast. Eng. 166:103885
    [Google Scholar]
  193. Ranasinghe R. 2020. On the need for a new generation of coastal change models for the 21st century. Sci. Rep. 10:2010
    [Google Scholar]
  194. Ranasinghe R, Swinkels C, Luijendijk A, Roelvink D, Bosboom J et al. 2011. Morphodynamic upscaling with the MORFAC approach: dependencies and sensitivities. Coast. Eng. 58:806–11
    [Google Scholar]
  195. Rapizo H, Durrant TH, Babanin AV. 2018. An assessment of the impact of surface currents on wave modeling in the Southern Ocean. Ocean Dyn 68:939–55
    [Google Scholar]
  196. Raubenheimer B. 2020. Development of a nearshore extreme events reconnaissance community. Coast. Eng. Proc. 36:keynote.12
    [Google Scholar]
  197. Reniers AJHM, Gallagher EL, MacMahan JH, Brown JA, van Rooijen AA et al. 2013. Observations and modeling of steep-beach grain-size variability. J. Geophys. Res. Oceans 118:577–91
    [Google Scholar]
  198. Rey AJM, Corbett DR, Mulligan RP. 2020. Impacts of hurricane winds and precipitation on hydrodynamics in a back-barrier estuary. J. Geophys. Res. Oceans 125:e2020JC016483
    [Google Scholar]
  199. Ribberink JS, van der A DA, Buijsrogge RH. 2010. SANTOSS transport model: a new formula for sand transport under waves and currents Rep. SANTOSS_UT_IR3 Univ. Twente Twente, Neth:.
  200. Rienecker MM, Fenton JD. 1981. A Fourier approximation method for steady water waves. J. Fluid Mech. 104:119–37
    [Google Scholar]
  201. Rocha MVL, Michallet H, Silva PA. 2017. Improving the parameterization of wave nonlinearities – the importance of wave steepness, spectral bandwidth and beach slope. Coast. Eng. 121:77–89
    [Google Scholar]
  202. Roelvink D, Costas S. 2019. Coupling nearshore and aeolian processes: XBeach and Duna process-based models. Environ. Model. Softw. 115:98–112
    [Google Scholar]
  203. Roelvink D, McCall R, Costas S, van der Lugt M 2019. Controlling swash zone slope is key to beach profile modelling. Coastal Sediments 2019 P Wang, JD Rosati, M Vallee 149–57 Singapore: World Sci.
    [Google Scholar]
  204. Roelvink D, Reniers A. 2012. A Guide to Modeling Coastal Morphology Singapore: World Sci.
  205. Roelvink D, Reniers A, van Dongeren A, van Thiel de Vries J, McCall R, Lescinski J. 2009. Modelling storm impacts on beaches, dunes and barrier islands. Coast. Eng. 56:1133–52
    [Google Scholar]
  206. Roelvink JA. 2006. Coastal morphodynamic evolution techniques. Coast. Eng. 53:277–87
    [Google Scholar]
  207. Roelvink JA, Brøker I. 1993. Cross-shore profile models. Coast. Eng. 21:163–91
    [Google Scholar]
  208. Roelvink JA, Stive MJF. 1989. Bar-generating cross-shore flow mechanisms on a beach. J. Geophys. Res. Oceans 94:4785–800
    [Google Scholar]
  209. Roelvink JA, van Banning GKFM. 1995. Design and development of DELFT3D and application to coastal morphodynamics. Oceanogr. Lit. Rev. 11:925
    [Google Scholar]
  210. Rogers R, Aberson S, Black M, Black P, Cione J et al. 2006. The Intensity Forecasting Experiment: a NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bull. Am. Meteorol. Soc. 87:1523–38
    [Google Scholar]
  211. Romero L, Hypolite D, McWilliams JC. 2020. Submesoscale current effects on surface waves. Ocean Model 153:101662
    [Google Scholar]
  212. Ruessink BG, Ramaekers G, van Rijn LC. 2012. On the parameterization of the free-stream non-linear wave orbital motion in nearshore morphodynamic models. Coast. Eng. 65:56–63
    [Google Scholar]
  213. Safak I, List JH, Warner JC, Schwab WC. 2017. Persistent shoreline shape induced from offshore geologic framework: effects of shoreface connected ridges. J. Geophys. Res. Oceans 122:8721–38
    [Google Scholar]
  214. Sallenger AH Jr. 2000. Storm impact scale for barrier islands. J. Coast. Res. 16:890–95
    [Google Scholar]
  215. Santiago-Collazo FL, Bilskie MV, Hagen SC. 2019. A comprehensive review of compound inundation models in low-gradient coastal watersheds. Environ. Model. Softw. 119:166–81
    [Google Scholar]
  216. Schäffer HA, Svendsen IA. 1988. Surf beat generation on a mild-slope beach. Coast. Eng. Proc. 21:1058–72
    [Google Scholar]
  217. Schambach L, Grilli AR, Grilli ST, Hashemi MR, King JW. 2018. Assessing the impact of extreme storms on barrier beaches along the Atlantic coastline: application to the southern Rhode Island coast. Coast. Eng. 133:26–42
    [Google Scholar]
  218. Schoonees JS, Theron AK. 1995. Evaluation of 10 cross-shore sediment transport/morphological models. Coast. Eng. 25:1–41
    [Google Scholar]
  219. Schweiger C, Kaehler C, Koldrack N, Schuettrumpf H. 2020. Spatial and temporal evaluation of storm-induced erosion modelling based on a two-dimensional field case including an artificial unvegetated research dune. Coast. Eng. 161:103752
    [Google Scholar]
  220. Scott TR, Mason DC. 2007. Data assimilation for a coastal area morphodynamic model: Morecambe Bay. Coast. Eng. 54:91–109
    [Google Scholar]
  221. Sherman DJ, Hales BU, Potts MK, Ellis JT, Liu H, Houser C 2013. Impacts of Hurricane Ike on the beaches of the Bolivar Peninsula, TX, USA. Geomorphology 199:62–81
    [Google Scholar]
  222. Sherwood CR, Harris CK, Geyer WR, Butman B. 2002. Toward a community coastal sediment transport modeling system: the second workshop. Eos Trans. AGU 83:604
    [Google Scholar]
  223. Sherwood CR, Signell RP, Harris CK, Butman B. 2000. Workshop discusses community models for coastal sediment transport. Eos Trans. AGU 81:502
    [Google Scholar]
  224. Sherwood CR, Warrick JA, Hill AD, Ritchie AC, Andrews BD, Plant NG. 2018. Rapid, remote assessment of Hurricane Matthew impacts using four-dimensional structure-from-motion photogrammetry. J. Coast. Res. 34:1303–16
    [Google Scholar]
  225. Shi L, Olabarrieta M, Nolan DS, Warner JC. 2020. Tropical cyclone rainbands can trigger meteotsunamis. Nat. Commun. 11:678
    [Google Scholar]
  226. Siviglia A, Crosato A. 2016. Numerical modelling of river morphodynamics: latest developments and remaining challenges. Adv. Water Resour. 93:1–3
    [Google Scholar]
  227. Smallegan SM, Irish JL, van Dongeren AR, den Bieman JP. 2016. Morphological response of a sandy barrier island with a buried seawall during Hurricane Sandy. Coast. Eng. 110:102–10
    [Google Scholar]
  228. Smit P, Janssen T, Holthuijsen L, Smith J. 2014. Non-hydrostatic modeling of surf zone wave dynamics. Coast. Eng. 83:36–48
    [Google Scholar]
  229. Smith JD 1977. Modeling of sediment transport on continental shelves. The Sea, Vol. 6: Marine Modeling ED Goldberg, IN McCave, JJ O'Brien, JH Steele 539–77 New York: Wiley-Intersci.
    [Google Scholar]
  230. Smith PJ, Dance SL, Baines MJ, Nichols NK, Scott TR. 2009. Variational data assimilation for parameter estimation: application to a simple morphodynamic model. Ocean Dyn 59:697
    [Google Scholar]
  231. Soulsby RL. 1997. Dynamics of Marine Sands London: Telford:
  232. Splinter KD, Carley JT, Golshani A, Tomlinson R. 2014. A relationship to describe the cumulative impact of storm clusters on beach erosion. Coast. Eng. 83:49–55
    [Google Scholar]
  233. Stark N, McNinch J, Wadman H, Graber HC, Albatal A, Mallas PA. 2017. Friction angles at sandy beaches from remote imagery. Géotech. Lett. 7:292–97
    [Google Scholar]
  234. Stelling GS, Duinmeijer SPA. 2003. A staggered conservative scheme for every Froude number in rapidly varied shallow water flows. Int. J. Numer. Methods Fluids 43:1329–54
    [Google Scholar]
  235. Stockdon HF, Holman RA. 2000. Estimation of wave phase speed and nearshore bathymetry from video imagery. J. Geophys. Res. Oceans 105:22015–33
    [Google Scholar]
  236. Stockdon HF, Holman RA, Howd PA, Sallenger AH. 2006. Empirical parameterization of setup, swash, and runup. Coast. Eng. 53:573–88
    [Google Scholar]
  237. Stow CA, Jolliff J, McGillicuddy DJ, Doney SC, Allen JI et al. 2009. Skill assessment for coupled biological/physical models of marine systems. J. Mar. Syst. 76:4–15
    [Google Scholar]
  238. Sutherland J, Peet AH, Soulsby RL. 2004. Evaluating the performance of morphological models. Coast. Eng. 51:917–39
    [Google Scholar]
  239. Suzuki T, Zijlema M, Burger B, Meijer MC, Narayan S. 2012. Wave dissipation by vegetation with layer schematization in SWAN. Coast. Eng. 59:64–71
    [Google Scholar]
  240. Svendsen IA. 2006. Introduction to Nearshore Hydrodynamics Singapore: World Sci.
  241. Symonds G, Huntley DA, Bowen AJ. 1982. Two-dimensional surf beat: long wave generation by a time-varying breakpoint. J. Geophys. Res. Oceans 87:492–98
    [Google Scholar]
  242. Tassi P, Villaret C. 2014. Sisyphe v6.3 user manual User Man. H-P74-2012-02004-EN Electr. Fr. Res. Dev Chatou:
  243. Tavakkol S, Lynett P 2017. Celeris: a GPU-accelerated open source software with a Boussinesq-type wave solver for real-time interactive simulation and visualization. Comput. Phys. Commun. 217:117–27
    [Google Scholar]
  244. Tissier M, Bonneton P, Marche F, Chazel F, Lannes D. 2011. Nearshore dynamics of tsunami-like undular bores using a fully nonlinear Boussinesq model. J. Coast. Res. Spec. Issue 64:603–7
    [Google Scholar]
  245. Tissier M, Bonneton P, Michallet H, Ruessink BG. 2015. Infragravity-wave modulation of short-wave celerity in the surf zone. J. Geophys. Res. Oceans 120:6799–814
    [Google Scholar]
  246. Tucker MJ. 1950. Surf beats: sea waves of 1 to 5 min. period. Proc. R. Soc. Lond. A 202:565–73
    [Google Scholar]
  247. Uchiyama Y, McWilliams JC, Shchepetkin AF. 2010. Wave-current interaction in an oceanic circulation model with a vortex-force formalism: application to the surf zone. Ocean Model 34:16–35
    [Google Scholar]
  248. Uittenbogaard R. 2003. Modelling turbulence in vegetated aquatic flows Paper presented at the International Workshop on Riparian Forest Vegetated Channels: Hydraulic, Morphological and Ecological Aspects Trento, It.: Feb 20–22
  249. van der A DA, Ribberink JS, van der Werf JJ, O'Donoghue T, Buijsrogge RH, Kranenburg WM 2013. Practical sand transport formula for non-breaking waves and currents. Coast. Eng. 76:26–42
    [Google Scholar]
  250. van der Lugt MA, Quataert E, van Dongeren A, van Ormondt M, Sherwood CR. 2019. Morphodynamic modeling of the response of two barrier islands to Atlantic hurricane forcing. Estuar. Coast. Shelf Sci. 229:106404
    [Google Scholar]
  251. van der Wegen M, Roelvink JA. 2008. Long-term morphodynamic evolution of a tidal embayment using a two-dimensional, process-based model. J. Geophys. Res. Oceans 113:C03016
    [Google Scholar]
  252. van Dongeren AR, Battjes J, Janssen T, van Noorloos J, Steenhauer K et al. 2007. Shoaling and shoreline dissipation of low-frequency waves. J. Geophys. Res. Oceans 112:C02011
    [Google Scholar]
  253. van Dongeren AR, Plant N, Cohen A, Roelvink D, Haller MC, Catalán P. 2008. Beach Wizard: nearshore bathymetry estimation through assimilation of model computations and remote observations. Coast. Eng. 55:1016–27
    [Google Scholar]
  254. van Dongeren AR, Reniers A, Battjes J, Svendsen I. 2003. Numerical modeling of infragravity wave response during DELILAH. J. Geophys. Res. Oceans 108:3288
    [Google Scholar]
  255. van Gent MRA. 2001. Wave runup on dikes with shallow foreshores. J. Water. Port Coast. Ocean Eng. 127:254–62
    [Google Scholar]
  256. van Ormondt M, Nelson TR, Hapke CJ, Roelvink D. 2020. Morphodynamic modelling of the wilderness breach, Fire Island, New York. Part I: model set-up and validation. Coast. Eng. 157:103621
    [Google Scholar]
  257. van Rijn LC. 2007a. Unified view of sediment transport by currents and waves. I: initiation of motion, bed roughness, and bed-load transport. J. Hydraul. Eng. 133:649–67
    [Google Scholar]
  258. van Rijn LC. 2007b. Unified view of sediment transport by currents and waves. II: suspended transport. J. Hydraul. Eng. 133:668–89
    [Google Scholar]
  259. van Rijn LC, Walstra DJR, Grasmeijer B, Sutherland J, Pan S, Sierra JP. 2003. The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based Profile models. Coast. Eng. 47:295–327
    [Google Scholar]
  260. van Rooijen AA, McCall RT, van Thiel de Vries JSM, van Dongeren AR, Reniers AJHM, Roelvink JA. 2016. Modeling the effect of wave-vegetation interaction on wave setup. J. Geophys. Res. Oceans 121:4341–59
    [Google Scholar]
  261. van Thiel de Vries JSM, van Gent MRA, Walstra DJR, Reniers AJHM. 2008. Analysis of dune erosion processes in large-scale flume experiments. Coast. Eng. 55:1028–40
    [Google Scholar]
  262. Vetsch D, Rousselot P, Volz C, Vonwiller L, Peter S et al. 2014. System manuals of BASEMENT: version 2.4 User Man., Lab. Hydraul., Glaciol., Hydrol., ETH Zurich Zurich:
  263. Visser PJ. 1994. A model for breach growth in sand-dikes. Coast. Eng. Proc. 24:2755–69
    [Google Scholar]
  264. Vitousek S, Barnard PL, Limber P, Erikson L, Cole B. 2017. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change. J. Geophys. Res. Earth Surf. 122:782–806
    [Google Scholar]
  265. Voinov AA, DeLuca C, Hood RR, Peckham S, Sherwood CR, Syvitski JPM. 2010. A community approach to Earth systems modeling. Eos Trans. AGU 91:117–18
    [Google Scholar]
  266. Vousdoukas MI, Ferreira Ó, Almeida LP, Pacheco A. 2012. Toward reliable storm-hazard forecasts: XBeach calibration and its potential application in an operational early-warning system. Ocean Dyn 62:1001–15
    [Google Scholar]
  267. Walstra DJR, Hoekstra R, Tonnon PK, Ruessink BG. 2013. Input reduction for long-term morphodynamic simulations in wave-dominated coastal settings. Coast. Eng. 77:57–70
    [Google Scholar]
  268. Walstra DJR, Mocke GP, Smit F. 1996. Roller contributions as inferred from inverse modelling techniques. Coast. Eng. Proc. 25:1205–18
    [Google Scholar]
  269. Wamsley TV, Cialone MA, Smith JM, Atkinson JH, Rosati JD. 2010. The potential of wetlands in reducing storm surge. Ocean Eng 37:59–68
    [Google Scholar]
  270. Wandres M, Wijeratne EMS, Cosoli S, Pattiaratchi C. 2017. The effect of the Leeuwin Current on offshore surface gravity waves in southwest Western Australia. J. Geophys. Res. Oceans 122:9047–67
    [Google Scholar]
  271. Warner JC, Armstrong B, He R, Zambon JB. 2010. Development of a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system. Ocean Model 35:230–44
    [Google Scholar]
  272. Warner JC, Butman B, Dalyander PS. 2008a. Storm-driven sediment transport in Massachusetts Bay. Cont. Shelf Res. 28:257–82
    [Google Scholar]
  273. Warner JC, Defne Z, Haas K, Arango HG. 2013. A wetting and drying scheme for ROMS. Comput. Geosci. 58:54–61
    [Google Scholar]
  274. Warner JC, Sherwood CR, Signell RP, Harris CK, Arango HG. 2008b. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Comput. Geosci. 34:1284–306
    [Google Scholar]
  275. Warren IR, Bach HK. 1992. MIKE 21: a modelling system for estuaries, coastal waters and seas. Environ. Softw. 7:229–40
    [Google Scholar]
  276. Whitehead JC. 2003. One million dollars per mile? The opportunity costs of hurricane evacuation. Ocean Coast. Manag. 46:1069–83
    [Google Scholar]
  277. Williams WW. 1947. The determination of gradients on enemy-held beaches. Geogr. J. 109:76–90
    [Google Scholar]
  278. Wilson GW, Berezhnoy S. 2018. Surfzone state estimation, with applications to quadcopter-based remote sensing data. J. Atmos. Ocean. Technol. 35:1881–96
    [Google Scholar]
  279. Wilson GW, Özkan-Haller HT, Holman RA. 2010. Data assimilation and bathymetric inversion in a two-dimensional horizontal surf zone model. J. Geophys. Res. Oceans 115:C12057
    [Google Scholar]
  280. Wilson GW, Özkan-Haller HT, Holman RA, Haller MC, Honegger DA, Chickadel CC. 2014. Surf zone bathymetry and circulation predictions via data assimilation of remote sensing observations. J. Geophys. Res. Oceans 119:1993–2016
    [Google Scholar]
  281. Wu L, Chen C, Guo P, Shi M, Qi J, Ge J. 2011. A FVCOM-based unstructured grid wave, current, sediment transport model, I. Model description and validation. J. Ocean Univ. China 10:1–8
    [Google Scholar]
  282. Yates ML, Guza RT, O'Reilly WC. 2009. Equilibrium shoreline response: observations and modeling. J. Geophys. Res. 114:C09014
    [Google Scholar]
  283. Yates ML, Guza RT, O'Reilly WC, Hansen JE, Barnard PL 2011. Equilibrium shoreline response of a high wave energy beach. J. Geophys. Res. Oceans 116:C04014
    [Google Scholar]
  284. Yin D, Xue ZG, Gochis DJ, Yu W, Morales M, Rafieeinasab A 2020. A process-based, fully distributed soil erosion and sediment transport model for WRF-Hydro. Water 12:1840
    [Google Scholar]
  285. Zambon JB, He R, Warner JC. 2014. Investigation of Hurricane Ivan using the coupled ocean–atmosphere–wave–sediment transport (COAWST) model. Ocean Dyn 64:1535–54
    [Google Scholar]
  286. Zijlema M, Stelling G, Smit P. 2011. SWASH: an operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coast. Eng. 58:992–1012
    [Google Scholar]
/content/journals/10.1146/annurev-marine-032221-090215
Loading
/content/journals/10.1146/annurev-marine-032221-090215
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error