Skip to main content
Log in

Windowed backoff algorithms for WiFi: theory and performance under batched arrivals

  • Published:
Distributed Computing Aims and scope Submit manuscript

Abstract

Binary exponential backoff (BEB) is a decades -old algorithm for coordinating access to a shared channel. In modern networks, BEB plays a crucial role in WiFi and other wireless communication standards. Despite this track record, well-known theoretical results indicate that under bursty traffic, BEB yields poor makespan, and superior algorithms are possible. To date, the degree to which these findings impact performance in wireless networks has not been examined. Here, we investigate a challenging case for BEB: a single burst (batch) of packets that simultaneously contend for access to a wireless channel. Using Network Simulator 3, we incorporate into IEEE 802.11g several newer algorithms that have theoretically-superior makespan guarantees. Surprisingly, we discover that these newer algorithms underperform BEB. Investigating further, we identify as the culprit a common abstraction regarding the cost of collisions. Our experimental results are complemented by analytical arguments that the number of collisions—and not solely makespan—is an important metric to optimize. We propose a new theoretical model that accounts for the cost of collisions, and derive new asymptotic bounds on the makespan for BEB and the newer backoff algorithms that align with our experimental findings. Finally, we argue that these findings have implications for the design of backoff algorithms in wireless networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. This content can be accessed by visiting www.maxwellyoung.net/publications, or by using Github at https://github.com/trishac97/NS3-802.11g-Backoff.

  2. While our results focus on the more common case of RTS/CTS being disabled, we do briefly report on the impact of RTS/CTS in Sect. 5.4.

  3. The standard offers a theoretical maximum of 54 Mbit/s.

  4. This timeout period is specified in Section 10.3.2.9, page 1317 of [42].

  5. We have also run experiments with 1 and 3 meter increments and the qualitative behavior remains the same; therefore, we omit those results.

  6. We exclude the time required for a station to associate with the access point and ARP requests/replies, as this will be the same regardless of the algorithm being evaluated.

  7. With probability \(1-O(\frac{1}{n^{c}})\) for a tunable constant \(c>1\).

  8. In practice, 54 Mbits/s is not achieved and so the true transmission delay is larger. Therefore, we are being conservative; the time for a (re)transmission is likely higher.

  9. For example, these inequalities are established in Lemma 3.3 by Richa et al. [52].

  10. We highlight that the constant 1/2 is not special. As the proof of Lemma 1 shows, any positive constant strictly less than \(\ln (2)\) will suffice. A similar algorithm is examined by Bender et al. [17] in order to obtain an upper bound on the makespan of LLB.

  11. This is set within the UdpClient class of NS3.

References

  1. Metcalfe, R.M., Boggs, D.R.: Ethernet: distributed packet switching for local computer networks. CACM 19(7), 395–404 (1976)

    Article  Google Scholar 

  2. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-free data structures. In: Proceedings of the 20th Annual International Symposium on Computer Architecture. New York, NY, USA: Association for Computing Machinery, (1993), pp. 289–300. [Online]. https://doi.org/10.1145/165123.165164

  3. Scherer, W.N., Scott, M.L.: Advanced contention management for dynamic software transactional memory. In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Principles of Distributed Computing. New York, NY, USA: Association for Computing Machinery, pp. 240–248. (2005) [Online]. https://doi.org/10.1145/1073814.1073861

  4. Ben-David, N., Blelloch, G.E.: Analyzing contention and backoff in asynchronous shared memory. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC 2017, Washington, DC, USA, July 25–27, 2017, pp. 53–62 (2017). [Online]. https://doi.org/10.1145/3087801.3087828

  5. Anderson, T.E.: The performance of spin lock alternatives for shared-money multiprocessors. IEEE Trans. Parall. Distrib. Syst. 1(1), 6–16 (1990)

    Article  Google Scholar 

  6. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on shared-memory multiprocessors. ACM Trans. Comput. Syst. 9(1), 21–65 (1991). https://doi.org/10.1145/103727.103729

    Article  Google Scholar 

  7. Mondal, A., Kuzmanovic, A.: Removing exponential backoff from TCP. SIGCOMM Comput. Commun. Rev. 38(5), 17–28 (2008)

    Article  Google Scholar 

  8. Goldberg, L., MacKenzie, P.: Analysis of practical backoff protocols for contention resolution with multiple servers. Warwick, ALCOM-IT Technical Report TR-074-96 (1996). http://www.dcs.warwick.ac.uk/~leslie/alcompapers/contention.ps

  9. Goldberg, L.A., MacKenzie, P.D., Paterson, M., Srinivasan, A.: Contention resolution with constant expected delay. J. ACM 47(6), 1048–1096 (2000)

    Article  MathSciNet  Google Scholar 

  10. Hastad, J., Leighton, T., Rogoff, B.: Analysis of backoff protocols for multiple access channels. in STOC’87, pp. 241–253. New York (1987)

  11. Raghavan, P., Upfal, E.: Stochastic contention resolution with short delays. In: Proceedings of the Twenty-Seventh Annual ACM Symposium on the Theory of Computing (STOC), pp. 229–237 (1995)

  12. Al-Ammal, H., Goldberg, L.A., MacKenzie, P.: Binary exponential backoff is stable for high arrival rates. Springer, Berlin, pp. 169–180 (2000)

  13. Al-Ammal, H., Goldberg, A.L., MacKenzie, P.: An improved stability bound for binary exponential backoff. Theory Comput. Syst. 34(3), 229–244 (2001)

    Article  MathSciNet  Google Scholar 

  14. Goodman, J., Greenberg, A.G., Madras, N., March, P.: Stability of binary exponential backoff. J. ACM 35(3), 579–602 (1988)

    Article  MathSciNet  Google Scholar 

  15. Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J. Sel. Areas Commun. 18(3), 535–547 (2006)

    Article  Google Scholar 

  16. Song, N.-O., Kwak, B.-J., Miller, L.E.: On the stability of exponential backoff. J. Res. Natl. Inst. Stand. Technol. 108(4) (2003)

  17. Bender, M.A., Farach-Colton, M., He, S., Kuszmaul, B.C., Leiserson, C.E.: Adversarial contention resolution for simple channels. In: Proceedings of the 17th Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 325–332 (2005)

  18. Greenberg, A.G., Flajolet, P., Ladner, R.E.: Estimating the multiplicities of conflicts to speed their resolution in multiple access channels. JACM 34(2), 289–325 (1987)

    Article  MathSciNet  Google Scholar 

  19. Bender, M.A., Kopelowitz, T., Pettie, S., Young, M.: Contention resolution with log-logstar channel accesses. In: Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, ser. STOC 2016, pp. 499–508 (2016)

  20. Teymori, S., Zhuang, W.: Queue Analysis for Wireless Packet Data Traffic. Springer, Berlin Heidelberg, pp. 217–227 (2005)

  21. Yu, J., Petropulu, A.P.: Study of the effect of the wireless gateway on incoming self-similar traffic. IEEE Trans. Signal Process. 54(10), 3741–3758 (2006)

    Article  Google Scholar 

  22. Ghani, S.: The impact of self similar traffic on wireless LAN. In: Proceedings of the 6th International Wireless Communications and Mobile Computing Conference, ser. IWCMC’10, pp. 52–56 (2010)

  23. Sarkar, N.I., Sowerby, K.W.: The effect of traffic distribution and transport protocol on WLAN performance. In: Telecommunication Networks and Applications Conference (ATNAC). Australasian 2009, 1–6 (2009)

  24. Canberk, B., Oktug, S.: Self similarity analysis and modeling of VoIP traffic under wireless heterogeneous network environment. In: Telecommunications, 2009 AICT’09. Fifth Advanced International Conference on 2009, pp. 76–82 (2009)

  25. Bhandari, B.N., Kumar, R.V.R., Maskara, S.L.: Performance of IEEE 802.16 MAC layer protocol under conditions of self-similar traffic. In: TENCON 2008—2008 IEEE Region 10 Conference, pp. 1–4 (2008)

  26. Anta, A.F., Mosteiro, M.A.: Contention resolution in multiple-access channels: k-selection in radio. Networks 378–388 (2010)

  27. Komlos, J., Greenberg, A.: An asymptotically fast nonadaptive algorithm for conflict resolution in multiple-access channels. IEEE Trans. Inf. Theory 31(2), 302–306 (2006)

    Article  MathSciNet  Google Scholar 

  28. Capetanakis, J.: Tree algorithms for packet broadcast channels. IEEE Trans. Inf. Theor. 25(5), 505–515 (2006)

    Article  MathSciNet  Google Scholar 

  29. Bender, M.A., Fineman, J.T., Gilbert, S.: Contention resolution with heterogeneous job sizes. In: Proceedings of the 14th Conference on Annual European Symposium (ESA), pp. 112–123 (2006)

  30. Bender, M.A., Fineman, J.T., Gilbert, S., Young, M.: How to scale exponential backoff: constant throughput, polylog access attempts, and robustness. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, ser. SODA ’16, pp. 636–654 (2016)

  31. Fineman, J.T., Newport, C., Wang, T.: Contention resolution on multiple channels with collision detection. In: Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, ser. PODC ’16, pp. 175–184 (2016)

  32. Avin, C., Emek, Y., Kantor, E., Lotker, Z., Peleg, D., Roditty, L.: SINR diagrams: towards algorithmically usable SINR models of wireless networks. In: Proceedings of the 28th ACM Symposium on Principles of Distributed Computing (PODC), pp. 200–209 (2009)

  33. Moscibroda, T.: The worst-case capacity of wireless sensor networks. In: 2007 6th International Symposium on Information Processing in Sensor Networks, pp. 1–10 (2007)

  34. Halldórsson, M.M., Wattenhofer, R.: Wireless communication is in APX. Springer, Berlin, pp. 525–536 (2009)

  35. Chatzimisios, P., Boucouvalas, A., Vitsas, V.: Effectiveness of RTS/CTS handshake in IEEE 80211a wireless LANs. Electron. Lett. 40(14), 915–916 (2004)

    Article  Google Scholar 

  36. Xu, K., Gerla, M., Bae, S.: Effectiveness of RTS/CTS handshake in IEEE 802.11 based ad hoc networks. Ad hoc Netw. 1(1), 107–123 (2003)

    Article  Google Scholar 

  37. Chatzimisios, P., Boucouvalas, A., Vitsas, V.: Optimisation of RTS/CTS handshake in IEEE 802.11 wireless LANs for maximum performance. In: IEEE Global Telecommunications Conference Workshops. IEEE, pp. 270–275 (2004)

  38. NS-3 Consortium, NS-3 (2017) www.nsnam.org

  39. Weingärtner, E., Vom Lehn, H., Wehrle, K.: Performance comparison of recent network simulators. In: Proceedings of the 2009 IEEE International Conference on Communications, ser. ICC’09, pp. 1287–1291 (2009)

  40. Stoffers, M., Riley, G.: Comparing the NS-3 propagation models. In: Proceedings of the IEEE 20th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, pp. 61–67 (2012)

  41. Lacage, M., Henderson, T.R.: Yet another network simulator. In: Proceeding from the 2006 Workshop on NS-2: The IP Network Simulator, ser. WNS2 ’06 (2006)

  42. IEEE Standard for Information Technology–Telecommunications and Information Exchange Between Systems Local and Metropolitan Area Networks—Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012), pp. 1–3534 (2016)

  43. Ji, Z., Sarkar, T.K., Li, B.-H.: Methods for optimizing the location of base stations for indoor wireless communications. IEEE Trans. Antennas Propag. 50(10), 1481–1483 (2002)

    Article  Google Scholar 

  44. Lin, Y., Yu, W., Lostanlen, Y.: Optimization of wireless access point placement in realistic urban heterogeneous networks. In: IEEE Global Communications Conference (GLOBECOM), vol. 2012, pp. 4963–4968 (2012)

  45. Maksuriwong, K., Varavithya, V., Chaiyaratana, N.: Wireless LAN access point placement using a multi-objective genetic algorithm. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1944–1949 (2003)

  46. Ekahau, “Wireless design,” (2018) www.ekahau.com

  47. Aerohive, “Wi-Fi planning tool,” (2018) www.aerohive.com/planner/

  48. Geréb-Graus, M., Tsantilas, T.: Efficient optical communication in parallel computers. In: Proceedings 4th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 41–48 (1992)

  49. Greenberg, R.I., Leiserson, C.E.: Randomized routing on fat-trees. In: Proceedings of the Symposium on Foundations of Computer Science (FOCS), pp. 241–249 (1985)

  50. Bender, M.A., Kopelowitz, T., Pettie, S., Young, M.: Contention resolution with constant throughput and log-logstar channel accesses. SIAM J. Comput. 47(5), 1735–1754 (2018). https://doi.org/10.1137/17M1158604

    Article  MathSciNet  MATH  Google Scholar 

  51. Kurose, J.F., Ross, K.: Computer Networking: A Top-Down Approach Featuring the Internet, 2nd edn. Addison-Wesley Longman Publishing Co. Inc, Boston (2002)

    Google Scholar 

  52. Richa, A., Scheideler, C., Schmid, S., Zhang, J.: Competitive and fair throughput for co-existing networks under adversarial interference. In Proceedings of the 31st ACM Symposium on Principles of Distributed Computing (PODC) (2012)

  53. Dubhashi, D., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms, 1st edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  54. Zhou, Q.M., Calvert, A., Young, M.: Singletons for simpletons: Revisiting windowed backoff using chernoff bounds. In: Accepted to the Tenth International Conference on Fun With Algorithms (FUN) (2020)

  55. IEEE Standard for Information technology – Telecommunications and information exchange between systems – Local and metropolitan area networks – Specific requirements - Part 15.1: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Wireless Personal Area Networks (WPANs), IEEE Standards 802.15.1, pp. 1–1169 (2002)

  56. Beard, C., Stallings, W.: Wireless Communication Networks and Systems, 1st edn. Pearson Education Limited, Harlow (2016)

    Google Scholar 

  57. Gollakota, S., Hassanieh, H., Ransford, B., Katabi, D., Fu, K.: They can hear your heartbeats: non-invasive security for implantable medical devices. In: Proceedings of the ACM SIGCOMM 2011 Conference, ser. SIGCOMM ’11, pp. 2–13 (2011)

  58. Kawahara, M., Nishimori, K., Hiraguri, T., Makino, H.: A new propagation model for collision detection using MIMO transmission in wireless LAN systems. In: IEEE International Workshop on Electromagnetics (iWEM), Vol. 2014, pp. 34–35 (2014)

  59. Morino, Y., Hiraguri, T., Ogawa, T., Yoshino, H., Nishimori, K.: Analysis evaluation of collision detection scheme utilizing MIMO transmission. In: 2014 IEEE 10th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 28–32 (2014)

  60. Bakshi, A., Chen, L., Srinivasan, K., Koksal, C.E., Eryilmaz, A.: EMIT: an efficient MAC paradigm for the internet of things. In: IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications, pp. 1–9 (2016)

  61. Anderton, W.C., Young, M.: Is our model for contention resolution wrong? Confronting the cost of collisions. In: Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA. ACM, pp. 183–194 (2017)

  62. Jurdziński, T., Kutyłowski, M., Zatopiański, J.: Energy-efficient size approximation of radio networks with no collision detection. In: Proceedings of the 8th Annual International Conference (COCOON), pp. 279–289 (2002)

  63. Chang, Y.-J., Kopelowitz, T., Pettie, S., Wang, R., Zhan, W.: Exponential separations in the energy complexity of leader election. In: Proceedings of the Annual ACM SIGACT Symposium on Theory of Computing (STOC) (2017)

  64. King, V., Saia, J., Young, M.: Conflict on a Communication Channel. In: Proceedings of the 30th Symposium on Principles of Distributed Computing (PODC), pp. 277–286 (2011)

  65. King, V., Pettie, S., Saia, J., Young, M.: A resource-competitive jamming defense. Distrib. Comput. 31(6), 419–439 (2018)

    Article  MathSciNet  Google Scholar 

  66. Richa, A., Scheideler, C., Schmid, S., Zhang, J.: Competitive throughput in multi-hop wireless networks despite adaptive jamming. Distrib. Comput. 26(3), 159–171 (2013)

    Article  Google Scholar 

  67. Gilbert, S., King, V., Pettie, S., Porat, E., Saia, J., Young, M.: (Near) Optimal resource-competitive broadcast with jamming. In: Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures, ser. SPAA ’14, pp. 257–266 (2014)

  68. Bender, M.A., Fineman, J.T., Movahedi, M., Saia, J., Dani, V., Gilbert, S., Pettie, S., Young, M.: Resource-competitive algorithms. SIGACT News 46(3), 57–71 (2015)

    Article  MathSciNet  Google Scholar 

  69. Gilbert, S., Zheng, C.: Sybilcast: broadcast on the open airwaves. ACM Trans. Parall. Comput. 2(3), 16:1-16:20 (2015)

    Google Scholar 

  70. Chen, H., Zheng, C.: Brief announcement: resource competitive broadcast against adaptive adversary in multi-channel radio networks. In: Emek, Y., Cachin, C. (Eds.) Proceedings of the Symposium on Principles of Distributed Computing (PODC). ACM, pp. 286–288 (2020)

  71. Chen, H., Zheng, C.: Fast and resource competitive broadcast in multi-channel radio networks. In: Scheideler, C., Berenbrink, P. (Eds.) Proceedings of the 31st ACM on Symposium on Parallelism in Algorithms and Architectures (SPAA). ACM, pp. 179–189 (2019)

  72. Gilbert, S.L., Zheng, C.: Sybilcast: broadcast on the open airwaves (extended abstract). In: Blelloch, G.E., Vöcking B. (Eds.) Proceedings of the 25th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 130–139 (2013)

  73. Awerbuch, B., Richa, A., Scheideler, C.: A jamming-resistant MAC protocol for single-hop wireless networks. In: Proceedings of the 27th ACM Symposium on Principles of Distributed Computing (PODC), pp. 45–54 (2008)

  74. Richa, A., Scheideler, C., Schmid, S., Zhang, J.: A jamming-resistant MAC protocol for multi-hop wireless networks. In: Proceedings of the International Symposium on Distributed Computing (DISC), pp. 179–193 (2010)

  75. Richa, A., Scheideler, C., Schmid, S., Zhang, J.: Competitive and fair medium access despite reactive jamming. In: Proceedings of the 31st International Conference on Distributed Computing Systems (ICDCS), pp. 507–516 (2011)

  76. Ogierman, A., Richa, A., Scheideler, C., Schmid, S., Zhang, J.: Competitive mac under adversarial SINR. In: IEEE Conference on Computer Communications (INFOCOM), pp. 2751–2759 (2014)

  77. Richa, A., Scheideler, C., Schmid, S., Zhang, J.: An efficient and fair MAC protocol robust to reactive interference. IEEE/ACM Trans. Netw. 21(1), 760–771 (2013)

    Article  Google Scholar 

  78. Aldawsari, B.A., Chlebus, B.S., Kowalski, D.R.: Broadcasting on adversarial multiple access channels. In: 2019 IEEE 18th International Symposium on Network Computing and Applications (NCA), pp. 1–4 (2019)

  79. Anantharamu, L., Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Medium access control for adversarial channels with jamming. In: Proceedings of the 18th International Colloquium on Structural Information and Communication Complexity (SIROCCO), pp. 89–100 (2011)

  80. Anantharamu, L., Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Packet latency of deterministic broadcasting in adversarial multiple access channels. J. Comput. Syst. Sci. 99, 27–52 (2019)

    Article  MathSciNet  Google Scholar 

  81. Tan, H., Wacek, C., Newport, C., Sherr, M.: A disruption-resistant MAC layer for multichannel wireless networks, pp. 202–216 (2014)

  82. Bender, M.A., Fineman, J.T., Gilbert, S., Young, M.: Scaling exponential backoff: constant throughput, polylogarithmic channel-access attempts, and robustness. J. ACM 66(1), 6:1-6:33 (2019). https://doi.org/10.1145/3276769

    Article  MathSciNet  MATH  Google Scholar 

  83. Willard, D.E.: Log-logarithmic selection resolution protocols in a multiple access channel. SIAM J. Comput. 15(2), 468–477 (1986)

    Article  MathSciNet  Google Scholar 

  84. Gilbert, S., Newport, C., Vaidya, N., Weaver, A.: Contention resolution with predictions. In: Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC) (2021)

  85. Fineman, J.T., Gilbert, S., Kuhn, F., Newport, C.: Contention resolution on a fading channel. In: Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, ser. PODC ’16, pp. 155–164 (2016)

  86. Bender, M.A., Kopelowitz, T., Kuszmaul, W., Pettie, S.: Contention resolution without collision detection. In: Proceedings of the 52nd Annual ACM Symposium on Theory of Computing (STOC), pp. 105–118 (2020)

  87. Chlebus, B.S., Kowalski, D.R.: A better wake-up in radio networks. In: Proceedings of 23rd ACM Symposium on Principles of Distributed Computing (PODC), pp. 266–274 (2004)

  88. Chlebus, B.S., Gasieniec, L., Kowalski, D.R., Radzik, T.: On the wake-up problem in radio networks. In: Proceedings of the 32nd International Colloquium on Automata, Languages and Programming (ICALP), pp. 347–359 (2005)

  89. Chrobak, M., Gasieniec, L., Kowalski, D.R.: The wake-up problem in multihop radio networks. SIAM J. Comput. 36(5), 1453–1471 (2007)

    Article  MathSciNet  Google Scholar 

  90. Chlebus, B.S., De Marco, G., Kowalski, D.R.: Scalable wake-up of multi-channel single-hop radio networks. Theor. Comput. Sci. 615(C), 23–44 (2016)

    Article  MathSciNet  Google Scholar 

  91. Jurdzinski, T., Stachowiak, G.: The cost of synchronizing multiple-access channels. In: Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC), pp. 421–430 (2015)

  92. Marco, G.D., Kowalski, D.R., Stachowiak, G.: Deterministic contention resolution on a shared channel. In: Proceedings of the 39th IEEE International Conference on Distributed Computing Systems, ICDCS, pp. 472–482 (2019)

  93. Kowalski, D.R.: On selection problem in radio networks. In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Principles of Distributed Computing, PODC 2005, Las Vegas, NV, USA, 17–20, 2005, pp. 158–166 (2005). https://doi.org/10.1145/1073814.1073843

  94. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Adversarial queuing on the multiple-access channel. In: Proceedings of the 25th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 92–101 (2006)

  95. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Adversarial queuing on the multiple access channel. ACM Trans. Algorithms 8(1), 5 (2012)

    Article  MathSciNet  Google Scholar 

  96. Anantharamu, L., Chlebus, B.S., Rokicki, M.A.: Adversarial multiple access channel with individual injection rates. In: Proceedings of the 13th International Conference on Principles of Distributed Systems (OPODIS), pp. 174–188 (2009)

  97. Marco, G.D., Kowalski, D.R.: Fast nonadaptive deterministic algorithm for conflict resolution in a dynamic multiple-access channel. SIAM J. Comput. 44(3), 868–888 (2015)

    Article  MathSciNet  Google Scholar 

  98. De Marco, G., Stachowiak, G.: Asynchronous shared channel. In: Proceedings of the ACM Symposium on Principles of Distributed Computing, ser. PODC ’17, pp. 391–400 (2017)

  99. Bienkowski, M., Jurdzinski, T., Korzeniowski, M., Kowalski, D.R.: Distributed online and stochastic queueing on a multiple access channel. ACM Trans. Algorithms (2018). https://doi.org/10.1145/3182396

    Article  MathSciNet  MATH  Google Scholar 

  100. Anta, A.F., Kowalski, D.R., Mosteiro, M.A., Wong, P.W.H.: Scheduling dynamic parallel workload of mobile devices with access guarantees. ACM Trans. Parall. Comput. (2018). https://doi.org/10.1145/3291529

    Article  Google Scholar 

  101. Bienkowski, M., Klonowski, M., Korzeniowski, M., Kowalski, D.R.: Randomized mutual exclusion on a multiple access channel. Distrib. Comput. 29(5), 341–359 (2016)

    Article  MathSciNet  Google Scholar 

  102. Agrawal, K., Bender, M.A., Fineman, J.T., Gilbert, S., Young, M.: Contention resolution with message deadlines. In: Scheideler, C., Spear, M. (Eds.) SPAA ’20: 32nd ACM Symposium on Parallelism in Algorithms and Architectures, Virtual Event, USA, July 15–17, 2020. ACM, pp. 23–35 (2020). https://doi.org/10.1145/3350755.3400239

  103. Hajek, B., van Loon, T.: Decentralized dynamic control of a multiaccess broadcast channel. IEEE Trans. Autom. Control 27(3), 559–569 (1982)

    Article  Google Scholar 

  104. Kelly, F.P.: Stochastic models of computer communication systems. J. R. Stat. Soc. Ser. B (Methodological) 47(3), 379–395 (1985)

    MathSciNet  MATH  Google Scholar 

  105. Gerla, M., Kleinrock, L.: Closed loop stability controls for S-ALOHA satellite communications. In: Proceedings of the Fifth Symposium on Data Communications, ser. SIGCOMM ’77, pp. 2.10–2.19 (1977)

  106. Cali, F., Conti, M., Gregori, E.: Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Trans. Netw. 8(6), 785–799 (2000)

    Article  Google Scholar 

  107. Cali, F., Conti, M., Gregori, E.: IEEE 802.11 protocol: design and performance evaluation of an adaptive backoff mechanism. IEEE J. Sel. Areas Commun. 18(9), 1774–1786 (2000)

    Article  Google Scholar 

  108. Bianchi, G., Tinnirello, I.: Kalman filter estimation of the number of competing terminals in an IEEE 80211 network. In: Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), 2, pp. 844–852 (2003)

  109. Ni, Q., Romdhani, L., Turletti, T.: A survey of QoS enhancements for IEEE 80211 wireless LAN: research articles. Wirel. Commun. Mobile Comput. 4(5), 547–566 (2004)

    Article  Google Scholar 

  110. Kuptsov, D., Nechaev, B., Lukyanenko, A., Gurtov, A.: How penalty leads to improvement: a measurement study of wireless backoff in IEEE 802.11 networks. Comput. Netw. 75, 37–57 (2014)

    Article  Google Scholar 

  111. Tinnirello, I., Bianchi, G., Xiao, Y.: Refinements on IEEE 802.11 distributed coordination function modeling approaches. IEEE Trans. Vehic. Technol. 59(3), 1055–1067 (2010)

    Article  Google Scholar 

  112. Choi, N., Seok, Y., Choi, Y., Kim, S., Jung, H.: P-DCF: enhanced backoff scheme for the IEEE 802.11 DCF. In: 2005 IEEE 61st Vehicular Technology Conference, vol. 3 (2005)

  113. Li, J., Haas, Z.J., Sheng, M., Chen, Y.: Performance evaluation of modified IEEE 802.11 MAC for multi-channel multi-hop ad hoc networks. J. Interconnect. Netw. 4(3), 345–359 (2003)

    Article  Google Scholar 

  114. Duda, A.: Understanding the performance of 802.11 networks. In: IEEE 19th International Symposium on Personal. Indoor and Mobile Radio Communications, vol. 2008, pp. 1–6 (2008)

  115. Zhu, Y.H., Tian, X.Z., Zheng, J.: Performance analysis of the binary exponential backoff algorithm for IEEE 802.11 based mobile ad hoc networks. In: 2011 IEEE International Conference on Communications (ICC), pp. 1–6 (2011)

  116. Sun, X., Dai, L.: Backoff design for IEEE 802.11 DCF networks: fundamental tradeoff and design criterion. IEEE/ACM Trans. Netw. 23(1), 300–316 (2015)

    Article  Google Scholar 

  117. Kwak, B.-J., Song, N.-O., Miller, L.E.: Performance analysis of exponential backoff. IEEE/ACM Trans. Netw. 13(2), 343–355 (2005)

    Article  Google Scholar 

  118. Shurman, M., Al-Shua’b, B., Alsaedeen, M., Al-Mistarihi, M.F., Darabkh, K.A.: N-BEB: new backoff algorithm for IEEE 802.11 MAC protocol. In: 37th International Convention on Information and Communication Technology. Electronics and Microelectronics (MIPRO), 2014, pp. 540–544 (2014)

  119. Manaseer, S.S., Ould-Khaoua, M., Mackenzie, L.M.: On the logarithmic backoff algorithm for MAC protocol in MANETs. In: Integrated Approaches in Information Technology and Web Engineering: Advancing Organizational Knowledge Sharing. IGI Global, ch. 12, pp. 174–184 (2009)

Download references

Acknowledgements

We are grateful to the reviewers for their comments, which greatly improved our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxwell Young.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is supported by the National Science Foundation Grant CNS-1816076 and the U.S. National Institute of Justice (NIJ) Grant 2018-75-CX-K002.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderton, W.C., Chakraborty, T. & Young, M. Windowed backoff algorithms for WiFi: theory and performance under batched arrivals. Distrib. Comput. 34, 367–393 (2021). https://doi.org/10.1007/s00446-021-00403-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00446-021-00403-9

Keywords

Navigation