Skip to main content
Log in

Efficient solvent suppression with adiabatic inversion for 1H-detected solid-state NMR

  • Communication
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

This study introduces a conceptually new solvent suppression scheme with adiabatic inversion pulses for 1H-detected multidimensional solid-state NMR (SSNMR) of biomolecules and other systems, which is termed “Solvent suppression of Liquid signal with Adiabatic Pulse” (SLAP). 1H-detected 2D 13C/1H SSNMR data of uniformly 13C- and 15N-labeled GB1 sample using ultra-fast magic angle spinning at a spinning rate of 60 kHz demonstrated that the SLAP scheme showed up to 3.5-fold better solvent suppression performance over a traditional solvent-suppression scheme for SSNMR, MISSISSIPPI (Zhou and Rienstra, J Magn Reson 192:167–172, 2008) with 2/3 of the average RF power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

JEOL Delta pulse programs are available upon request.

References

  • Agarwal V et al (2014) De novo 3D structure determination from sub-milligram protein samples by solid-state 100 kHz MAS NMR spectroscopy. Angew Chem Int Edit 53:12253–12256

    Article  Google Scholar 

  • Andreas LB et al (2016) Structure of fully protonated proteins by proton-detected magic-angle spinning NMR. Proc Natl Acad Sci USA 113:9187–9192

    Article  Google Scholar 

  • Asami S, Schmieder P, Reif B (2010) High resolution H-1-detected solid-state NMR spectroscopy of protein aliphatic resonances: access to tertiary structure information. J Am Chem Soc 132:15133–15135

    Article  Google Scholar 

  • Baum J, Tycko R, Pines A (1983) Broadband population inversion by phase modulated pulses. J Chem Phys 79:4643–4644

    Article  ADS  Google Scholar 

  • Baum J, Tycko R, Pines A (1985) Broadband and adiabatic inversion of a two-level system by phase-modulated pulses. Phys Rev A 32:3435–3447

    Article  ADS  Google Scholar 

  • Ernst M, Samoson A, Meier BH (2001) Low-power decoupling in fast magic-angle spinning NMR. Chem Phys Lett 348:293–302

    Article  ADS  Google Scholar 

  • Franks WT et al (2005) Magic-angle spinning solid-state NMR spectroscopy of the beta 1 immunoglobulin binding domain of protein G (GB1): N-15 and C-13 chemical shift assignments and conformational analysis. J Am Chem Soc 127:12291–12305

    Article  Google Scholar 

  • Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142:97–101

    Article  ADS  Google Scholar 

  • Hediger S, Meier BH, Ernst RR (1995) Adiabatic passage Hartmann-Hahn cross polarization in NMR under magic angle sample spinning. Chem Phys Lett 240:449–456

    Article  ADS  Google Scholar 

  • Huber M et al (2011) A proton-detected 4D solid-state NMR experiment for protein structure determination. ChemPhysChem 12:915–918

    Article  Google Scholar 

  • Ishii Y, Terao T (1998) Manipulation of nuclear spin Hamiltonians by rf-field modulations and its applications to observation of powder patterns under magic-angle spinning. J Chem Phys 109:1366–1374

    Article  ADS  Google Scholar 

  • Ishii Y, Tycko R (2000) Sensitivity enhancement in solid state 15N NMR by indirect detection with high-speed magic angle spinning. J Magn Reson 142:199–204

    Article  ADS  Google Scholar 

  • Ishii Y, Yesinowski JP, Tycko R (2001) Sensitivity enhancement in solid-state C-13 NMR of synthetic polymers and biopolymers by H-1 NMR detection with high-speed magic angle spinning. J Am Chem Soc 123:2921–2922

    Article  Google Scholar 

  • Ishii Y et al (2018) Progress in proton-detected solid-state NMR (SSNMR): super-fast 2D SSNMR collection for nano-mole-scale proteins. J Magn Reson 286:99–109

    Article  ADS  Google Scholar 

  • Linser R et al (2011) Proton-detected solid-state NMR spectroscopy of fibrillar and membrane proteins. Angew Chem Int Edit 50:4508–4512

    Article  Google Scholar 

  • Marchetti A et al (2012) Backbone assignment of fully protonated solid proteins by 1H detection and ultrafast magic-angle-spinning NMR spectroscopy. Angew Chem Int Edit 51:10756–10759

    Article  Google Scholar 

  • McDermott A (2009) Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Annu Rev Biophys 38:385–403

    Article  MathSciNet  Google Scholar 

  • Medeiros-Silva J et al (2016) H-1-detected solid-state NMR studies of water-inaccessible proteins in vitro and in situ. Angew Chem Int Edit 55:13606–13610

    Article  Google Scholar 

  • Nishiyama Y, Malon M, Ishii Y, Ramamoorthy A (2014) 3D N-15/N-15/H-1 chemical shift correlation experiment utilizing an RFDR-based H-1/H-1 mixing period at 100 kHz MAS. J Magn Reson 244:1–5

    Article  ADS  Google Scholar 

  • Potnuru LR et al (2020) Accuracy of 1H–1H distances measured using frequency selective recoupling and fast magic-angle spinning. J Chem Phys 153:084202–084202

    Article  ADS  Google Scholar 

  • Shaka AJ, Keeler J, Frenkiel T, Freeman J (1983) An improved sequence for broadband decoupling: WALTZ-16. J Magn Reson 52:335–338

    ADS  Google Scholar 

  • Struppe J, Quinn CM, Sarkar S, Gronenborn AM, Polenova T (2020) Ultrafast H-1 MAS NMR crystallography for natural abundance pharmaceutical compounds. Mol Pharm 17:674–682

    Google Scholar 

  • Wang S et al (2015) Nano-mole scale sequential signal assignment by 1H-detected protein solid-state NMR using ultra-fast magic-angle spinning and HIGHLIGHT spectral editing. Chem Comm 51:15055–15058

    Article  Google Scholar 

  • Wickramasinghe NP, Shaibat M, Ishii Y (2005) Enhanced sensitivity and resolution in 1H solid-state NMR spectroscopy of paramagnetic complexes under very fast magic angle spinning. J Am Chem Soc 127:5796–5797

    Article  Google Scholar 

  • Wickramasinghe NP et al (2009) Nanomole-scale protein solid-state NMR by breaking intrinsic H-1 T-1 boundaries. Nat Methods 6:215–218

    Article  Google Scholar 

  • Wickramasinghe A et al (2015) Evolution of CPMAS under fast magic-angle-spinning at 100 kHz and beyond. Solid-State Nuclear Magn Resonance 72:9–16

    Article  Google Scholar 

  • Wickramasinghe A et al (2021) Sensitivity-enhanced solid-state NMR detection of structural differences and unique polymorphs in Pico- to nanomolar amounts of brain-derived and synthetic 42-residue amyloid-β fibrils. J Am Chem Soc 143:11462–11472

    Article  Google Scholar 

  • Wiench JW, Bronnimann CE, Lin VSY, Pruski M (2007) Chemical shift correlation NMR spectroscopy with indirect detection in fast rotating solids: studies of organically functionalized mesoporous silicas. J Am Chem Soc 129:12076

    Article  Google Scholar 

  • Yan S, Suiter CL, Hou G, Zhang H, Polenova T (2013) Probing structure and dynamics of protein assemblies by magic angle spinning NMR spectroscopy. Acc Chem Res 46:2047–2058

    Article  Google Scholar 

  • Yuan ECY et al (2021) Faster magic angle spinning reveals cellulose conformations in woods. Chem Commun 57:4110–4113

    Article  Google Scholar 

  • Zhou DH, Rienstra CM (2008) High-performance solvent suppression for proton detected solid-state NMR. J Magn Reson 192:167–172

    Article  ADS  Google Scholar 

  • Zhou DH et al (2007) Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic angle spinning. J Am Chem Soc 129:11791–11801

    Article  Google Scholar 

Download references

Acknowledgements

This work was in part supported by the JST-Mirai Program (Grant No. JPMJMI17A2, Japan) to Y. I. The instruments employed in the work were partly supported by a JSPS KAKENHI Grant (No. JP15K21772, Japan) to Y. I. RO thanks the Nakatani Foundation for support from its scholarship program. The authors thank the Yokohama RIKEN NMR Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Ishii.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsunaga, T., Okabe, R. & Ishii, Y. Efficient solvent suppression with adiabatic inversion for 1H-detected solid-state NMR. J Biomol NMR 75, 365–370 (2021). https://doi.org/10.1007/s10858-021-00384-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-021-00384-8

Keywords

Navigation