Skip to main content
Log in

On Short-Wave Instability of One-Dimensional Radiative-Convective Models of Atmosphere in Quasi-Hydrostatic Approximation

  • Published:
Moscow University Mechanics Bulletin Aims and scope

Abstract

One-dimensional radiative-convective models are widely used for studying long-term climate and the influence of various processes (condensation of water vapor, motion of droplets, and their impacts on radiative fluxes, etc.) on the hydrodynamics of the atmosphere. However, long-term prediction of climate is difficult due to the properties of the systems of equations, i.e., a small short-wave perturbation of the basic solution leads to a local sharp increase in the amplitude of perturbation. In this work, a one-dimensional nonstationary model with quasi-hydrostatic approximation is established and the short-wave instability is analyzed for various approximate models with the quasi-hydrostatic approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Manebe and R. T. Wetherald, ‘‘Thermal equilibrium of the atmosphere with a given distribution of relative humidity,’’ J. Atmos. Sci. 24, 241–259 (1967). https://doi.org/10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;2

    Article  ADS  Google Scholar 

  2. T. Augustsson and V. Ramanathan, ‘‘A radiative-convective model study of the CO\({}_{2}\) climate problem,’’ J. Atmos. Sci. 33, 448–451 (1977). https://doi.org/10.1175/1520-0469(1977)034<0448:ARCMSO>2.0.CO;2

    Article  ADS  Google Scholar 

  3. V. Ramanathan and J. A. Coakley, Jr., ‘‘Climate modeling through radiative-convective models,’’ Rev. Geophys. 16, 465–489 (1978). https://doi.org/10.1029/RG016i004p00465

    Article  ADS  Google Scholar 

  4. T. P. Charlock, ‘‘Cloud optical feedback and climate stability in a radiative-convective model,’’ Tellus 34, 245–254 (1982). https://doi.org/10.1111/j.2153-3490.1982.tb01813.x

    Article  ADS  Google Scholar 

  5. K.-N. Liou and S.-C. Ou, ‘‘The role of cloud microphysical processes in climate: An assessment from a one-dimensional perspective,’’ J. Geophys. Res.: Atmos. 94, 8599–8607 (1989). https://doi.org/10.1029/JD094iD06p08599

    Article  ADS  Google Scholar 

  6. N. O. Rennó, K. A. Emanuel, and P. H. Stone, ‘‘Radiative-convective model with an explicit hydrologic cycle: 1. Formulation and sensitivity to model parameters,’’ J. Geophys. Res.: Atmos. 99, 14429–14441 (1994). https://doi.org/10.1029/94JD00020

    Article  ADS  Google Scholar 

  7. N. O. Rennó, P. H. Stone, and K. A. Emanuel, ‘‘Radiative-convective model with an explicit hydrologic cycle: 2. Sensitivity to large changes in solar forcing,’’ J. Geophys. Res.: Atmos. 99, 17001–17020 (1944). https://doi.org/10.1029/94JD01332

    Article  ADS  Google Scholar 

  8. M. A. Kelly, D. A. Randall, and G. L. Stephens, ‘‘A simple radiative-convective model with a hydrological cycle and interactive clouds,’’ Q. J. Roy. Meteorol. Soc. 125 (555), 837–869 (1999). https://doi.org/10.1002/qj.49712555505

    Article  ADS  Google Scholar 

  9. V. E. Larson, ‘‘Stability properties of and scaling laws for a dry radiative-convective atmosphere,’’ Q. J. Roy. Meteorol. Soc. 126 (562), 145–171 (2000). https://doi.org/10.1002/qj.49712656208

    Article  ADS  Google Scholar 

  10. V. E. Larson, ‘‘The effects of thermal radiation on dry convective instability,’’ Dyn. Atmos. Oceans 34, 45–71 (2001). https://doi.org/10.1016/S0377-0265(01)00060-4

    Article  ADS  Google Scholar 

  11. K. Emanuel, A. A. Wing, and E. M. Vincent, ‘‘Radiative-convective instability,’’ J. Adv. Model. Earth Syst. 6, 75–90 (2014). https://doi.org/10.1002/2013MS000270

    Article  ADS  Google Scholar 

  12. Z. Fuchs and D. J. Raymond, ‘‘Large-scale modes in a rotating atmosphere with radiative-convective instability and WISHE,’’ J. Atmos. Sci. 62, 4084–4094 (2005). https://doi.org/10.1175/JAS3582.1

    Article  ADS  Google Scholar 

  13. T. Beucler, T. Cronin, and K. Emanuel, ‘‘A linear response framework for radiative-convective instability,’’ J. Adv. Model. Earth Syst. 10, 1924–1951 (2018). https://doi.org/10.1029/2018MS001280

    Article  Google Scholar 

  14. R. I. Nigmatulin, ‘‘Equations of hydro- and thermodynamics of the atmosphere when inertial forces are small in comparison with gravity,’’ Fluid Dyn. 53, S121–S130 (2018). https://doi.org/10.1134/S0015462818040201

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. A. S. Monin, Theoretical Foundations of Geophysical Fluid Dynamics (Gidrometeoizdat, Moscow, 1988).

    Google Scholar 

  16. L. D. Landau and E. M. Lifshits, Theoretical Physics, vol. 6: Fluid Dynamics (Nauka, Moscow, 1986).

  17. J. R. Holton and G. J. Hakim, An Introduction to Dynamic Meteorology, 5th ed. (Academic Press, Waltham, 2012).

    Google Scholar 

  18. G. I. Marchuk, Numerical Solution to Problems of Atmospheric and Oceanic Dynamics (Gidrometeoizdat, Moscow, 1974).

    Google Scholar 

Download references

Funding

The work is supported by the Chinese Scholarship Council, project no. 201306840046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Xu.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X. On Short-Wave Instability of One-Dimensional Radiative-Convective Models of Atmosphere in Quasi-Hydrostatic Approximation. Moscow Univ. Mech. Bull. 76, 105–110 (2021). https://doi.org/10.3103/S002713302104004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002713302104004X

Keywords:

Navigation