Skip to main content
Log in

Abstract

We introduce a model for random chain complexes over a finite field. The randomness in our complex comes from choosing the entries in the matrices that represent the boundary maps uniformly over \(\mathbb {F}_q\), conditioned on ensuring that the composition of consecutive boundary maps is the zero map. We then investigate the combinatorial and homological properties of this random chain complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bollobás, B., Riordan, O.: Percolation. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  2. Bott, R., Tu, L.W.: Differential Forms in Algebraic Topology, vol. 82. Springer, Berlin (2013)

    MATH  Google Scholar 

  3. Broadbent, S.R., Hammersley, J.M.: Percolation processes: I. Crystals and mazes. Math. Proc. Camb. Philos. Soc. 53(3), 629–641 (1957)

    Article  MathSciNet  Google Scholar 

  4. Brown, K.S.: Cohomology of Groups, vol. 87. Springer, Berlin (2012)

    Google Scholar 

  5. Cartan, H., Eilenberg, S.: Homological Algebra (PMS-19), vol. 19. Princeton University Press, Princeton (2016)

    Google Scholar 

  6. Erdös, P., Rényi, A.: On random graphs I. Publ. Math. Debrecen 6, 290–297 (1959)

    MathSciNet  MATH  Google Scholar 

  7. Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 5(1), 17–60 (1960)

    MathSciNet  MATH  Google Scholar 

  8. Ginzburg, V.L., Pasechnik, D.V.: Random chain complexes. Arnold Math J. 1–8 (2017)

  9. Hartshorne, R.: Algebraic geometry, vol. 52. Springer, Berlin (2013)

    MATH  Google Scholar 

  10. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  11. Hochschild, G.: On the cohomology groups of an associative algebra. Ann. Math. 58–67(1945)

  12. Kesten, H.: Percolation Theory for Mathematicians, vol. 423. Springer, Berlin (1982)

    Book  Google Scholar 

  13. Linia, N., Peled, Y.: Random simplicial complexes: around the phase transition. In: Loebl, M., Nesetril, J., Thomas, R. (eds.) A Journey Through Discrete Mathematics: A Tribute to Jirr̆í Matous̆ek, pp. 543–570. Springer, Berlin (2017)

    Chapter  Google Scholar 

  14. Stanley, R.P.: Enumerative Combinatorics, vol. 1. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  15. Zabka, M.: A random Bockstein operator. Algebra Discrete Math. 25(2), 311–321 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author would like to thank Peter Bubenik for helpful discussions.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Zabka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Frau Richter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catanzaro, M.J., Zabka, M.J. A model for random chain complexes. Abh. Math. Semin. Univ. Hambg. 91, 335–344 (2021). https://doi.org/10.1007/s12188-021-00248-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12188-021-00248-w

Keywords

Mathematics Subject Classification

Navigation