Skip to main content
Log in

A Distributional Proof of \(p\)-Adic Wiener Tauberian Theorem and Approximation by Translates of a Function

  • Research Articles
  • Published:
p-Adic Numbers, Ultrametric Analysis and Applications Aims and scope Submit manuscript

Abstract

Using \(p\)-adic distributions we obtain the uniqueness result for convolution. As a corollary of this result one can obtain \(p\)-adic Wiener Tauberian theorem and Wiener approximation theorem. Also we prove that there is no basis of \(L^1(\mathbb Q^n_p)\) consisting of translates of a function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Vladimirov, I. V. Volovich and E.I. Zelenov, \(p\)-Adic Analysis and Mathematical Physics (World Scientific, Singapore, 1994).

    Book  Google Scholar 

  2. N. Koblitz, \(p\)-Adic Numbers, \(p\)-Adic Analysis, and Zeta Functions (Springer-Verlag, N.Y., 1984).

    Book  Google Scholar 

  3. M. H. Taibleson, Fourier Analysis on Local Fields (Princeton Univ. Press, Princeton, 1975).

    MATH  Google Scholar 

  4. N. Wiener, The Fourier Integral and Certain of its Applications (Cambridge Univ. Press, London, 1933).

    MATH  Google Scholar 

  5. M. A. Naimark, Normed Algebras (Wolters-Noordhoff, Groningen, 1972).

    Google Scholar 

  6. W. Rudin, Fourier Analysis on Groups (Interscience, New York-London, 1962)

    MATH  Google Scholar 

  7. B. I. Golubov, “On approximation by convolutions and bases of shifts of a function,” Anal. Math. 34 (1), 9–28 (2008).

    Article  MathSciNet  Google Scholar 

  8. S. S. Volosivets, “Applications of \(p\)-adic generalized functions and approximations by a system of \(p\)-adic translations of a function,” Siber. Math. J. 50 (1), 1–13 (2009).

    Article  MathSciNet  Google Scholar 

  9. J. Korevaar, “Distribution proof of Wiener’s Tauberian theorem,” Proc. Amer. Math. Soc. 16 (3), 353–355 (1965).

    MathSciNet  MATH  Google Scholar 

  10. I. P. Natanson, Theory of Functions of a Real Variable. Vol. 1 (Ungar, N.Y., 1974).

    Google Scholar 

  11. S. S. Volosivets, “Hausdorff operators on \(p\)-adic linear spaces and their properties in Hardy, BMO, and Hölder spaces,” Math. Notes 93, 382–391 (2013).

    Article  MathSciNet  Google Scholar 

  12. S. G. Krein (ed.), N. Ya. Vilenkin, E. A. Gorin et al., Functional Analysis (Wolters-Noordhoff, Groningen, 1972).

    Google Scholar 

  13. A. M. Sedletskii, Fourier Transforms and Approximations (CRC Press, Boca-Raton, FL, 2000).

    Book  Google Scholar 

  14. S. Kaczmarz and H. Steinhaus, The Theory of Orthogonal Series (Fizmatgiz, Moscow, 1958) [Russian translation].

    MATH  Google Scholar 

  15. J. Korevaar, Tauberian Theory. A Century of Developments (Springer-Verlag, Berlin-Heidelberg-New York, 2004).

    Book  Google Scholar 

Download references

Acknowledgments

The author thanks the anonymous referee whose critical remarks change the content of the paper.

Funding

This work is supported by the Ministry of Science and Education of the Russian Federation in the framework of the basic part of the scientific research state task, project FSRR-2020-0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Volosivets.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volosivets, S.S. A Distributional Proof of \(p\)-Adic Wiener Tauberian Theorem and Approximation by Translates of a Function. P-Adic Num Ultrametr Anal Appl 13, 308–315 (2021). https://doi.org/10.1134/S2070046621040051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070046621040051

Keywords

Navigation