Skip to main content
Log in

An Incompatibility Result on non-Archimedean Integration

  • Research Articles
  • Published:
p-Adic Numbers, Ultrametric Analysis and Applications Aims and scope Submit manuscript

Abstract

We prove that a Riemann-like integral on non-Archimedean extensions of \(\mathbb{R}\) cannot assign an integral to every function whose standard part is measurable and simultaneously satisfy the fundamental theorem of calculus. We also discuss how existing theories of non-Archimedean integration deal with the incompatibility of these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Berarducci and M. Otero, “An additive measure in o-minimal expansions of fields,” Quart. J. Math. 55 (4), 411–419 (2004),

    Article  MathSciNet  Google Scholar 

  2. E. Bottazzi, “Grid functions of nonstandard analysis in the theory of distributions and in partial differential equations,” Adv. Math. 345, 429–482 (2019).

    Article  MathSciNet  Google Scholar 

  3. E. Bottazzi, “Spaces of measurable functions on the Levi-Civita field,” Indagat. Math. 31 (4), 650–694 (2020).

    Article  MathSciNet  Google Scholar 

  4. E. Bottazzi, “A real-valued measure on non-Archimedean field extensions of \(\mathbb{R}\),” to appear in p-Adic Num. Ultrametr. Anal. Appl. 14 (1), (2022).

    Google Scholar 

  5. E. Bottazzi and M. Eskew, “Integration with filters,” submitted. See https://arxiv.org/abs/2004.09103.

  6. J. H. Conway, On Numbers and Games, Second Edition (A. K. Peters, Ltd., Natick, Massachusetts, 2001).

    MATH  Google Scholar 

  7. O. Costin, P. Ehrlich and H. Friedman, “Integration on the surreals: a conjecture of Conway, Kruskal and Norton,” preprint (2015). See https://arxiv.org/abs/1505.02478.

  8. N. J. Cutland, “Nonstandard measure theory and its applications,” Bull. London Math. Soc. 15, 529–589 (1983).

    Article  MathSciNet  Google Scholar 

  9. D. Flynnn and K. Shamseddine, “On integrable delta functions on the Levi-Civita field,” p-Adic Num. Ultrametr. Anal. Appl. 10 (1), 32–56 (2018).

    Article  MathSciNet  Google Scholar 

  10. A. Fornasiero, Integration on Surreal Numbers, PhD Thesis (2004).

    Google Scholar 

  11. L. Gillman, “An axiomatic approach to the integral,” Amer. Math. Month. 100 (1), 16–25 (1993).

    Article  MathSciNet  Google Scholar 

  12. T. Kaiser, “Lebesgue measure and integration theory on non-archimedean real closed fields with archimedean value group,” Proc. London Math. Soc. 116 (2), 209–247 (2018).

    Article  MathSciNet  Google Scholar 

  13. E. P. Klement and R. Mesiar, “Discrete integrals and axiomatically defined functionals,” Axioms 1, 9–20 (2012).

    Article  Google Scholar 

  14. K. Shamseddine, “New results on integration on the Levi-Civita field,” Indagat. Math. 24 (1), 199–211 (2013).

    Article  MathSciNet  Google Scholar 

  15. K. Shamseddine and M. Berz, “Measure theory and integration on the Levi-Civita field,” Contemp. Math. 319, 369–388 (2003).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Bottazzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bottazzi, E. An Incompatibility Result on non-Archimedean Integration. P-Adic Num Ultrametr Anal Appl 13, 316–319 (2021). https://doi.org/10.1134/S2070046621040063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070046621040063

Keywords

Navigation