1932

Abstract

Repeat-enriched genomic regions evolve rapidly and yet support strictly conserved functions like faithful chromosome transmission and the preservation of genome integrity. The leading resolution to this paradox is that DNA repeat–packaging proteins evolve adaptively to mitigate deleterious changes in DNA repeat copy number, sequence, and organization. Exciting new research has tested this model of coevolution by engineering evolutionary mismatches between adaptively evolving chromatin proteins of one species and the DNA repeats of a close relative. Here, we review these innovative evolution-guided functional analyses. The studies demonstrate that vital, chromatin-mediated cellular processes, including transposon suppression, faithful chromosome transmission, and chromosome retention depend on species-specific versions of chromatin proteins that package species-specific DNA repeats. In many cases, the ever-evolving repeats are selfish genetic elements, raising the possibility that chromatin is a battleground of intragenomic conflict.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-071719-020301
2021-11-23
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/genet/55/1/annurev-genet-071719-020301.html?itemId=/content/journals/10.1146/annurev-genet-071719-020301&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Akera T, Trimm E, Lampson MA 2019. Molecular strategies of meiotic cheating by selfish centromeres. Cell 178:1132–44.e10
    [Google Scholar]
  2. 2. 
    Allshire RC, Madhani HD. 2018. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell Biol. 19:229–44
    [Google Scholar]
  3. 3. 
    Bachtrog D. 2013. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 14:113–24
    [Google Scholar]
  4. 4. 
    Barbash DA, Siino DF, Tarone AM, Roote J. 2003. A rapidly evolving MYB-related protein causes species isolation in Drosophila. PNAS 100:5302–7
    [Google Scholar]
  5. 5. 
    Bayes JJ, Malik HS. 2009. Altered heterochromatin binding by a hybrid sterility protein in Drosophila sibling species. Science 326:1538–41
    [Google Scholar]
  6. 6. 
    Beilstein MA, Renfrew KB, Song X, Shakirov EV, Zanis MJ, Shippen DE. 2015. Evolution of the telomere-associated protein POT1a in Arabidopsis thaliana is characterized by positive selection to reinforce protein–protein interaction. Mol. Biol. Evol. 32:1329–41
    [Google Scholar]
  7. 7. 
    Biessmann H, Mason JM, Ferry K, d'Hulst M, Valgeirsdottir K et al. 1990. Addition of telomere-associated HeT DNA sequences “heals” broken chromosome ends in Drosophila. Cell 61:663–73
    [Google Scholar]
  8. 8. 
    Blumenstiel JP, Erwin AA, Hemmer LW. 2016. What drives positive selection in the Drosophila piRNA machinery? The genomic autoimmunity hypothesis. Yale J. Biol. Med. 89:499–512
    [Google Scholar]
  9. 9. 
    Blumenstiel JP, Hartl DL, Lozovsky ER. 2002. Patterns of insertion and deletion in contrasting chromatin domains. Mol. Biol. Evol. 19:2211–25
    [Google Scholar]
  10. 10. 
    Bosco G, Campbell P, Leiva-Neto JT, Markow TA. 2007. Analysis of Drosophila species genome size and satellite DNA content reveals significant differences among strains as well as between species. Genetics 177:1277–90
    [Google Scholar]
  11. 11. 
    Brendel V, Kurtz S, Walbot V. 2002. Comparative genomics of Arabidopsis and maize: prospects and limitations. Genome Biol. 3:reviews1005.1
    [Google Scholar]
  12. 12. 
    Brennecke J, Aravin AA, Stark A, Dus M, Kellis M et al. 2007. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–103
    [Google Scholar]
  13. 13. 
    Brideau NJ, Flores HA, Wang J, Maheshwari S, Wang X, Barbash DA 2006. Two Dobzhansky-Muller genes interact to cause hybrid lethality in Drosophila. Science 314:1292–95
    [Google Scholar]
  14. 14. 
    Britten RJ, Kohne DE. 1968. Repeated sequences in DNA. Science 161:529–40
    [Google Scholar]
  15. 15. 
    Burt A, Trivers R. 2009. Genes in Conflict: The Biology of Selfish Genetic Elements Cambridge, MA: Harvard Univ. Press
  16. 16. 
    Cechova M, Harris RS, Tomaszkiewicz M, Arbeithuber B, Chiaromonte F, Makova KD 2019. High satellite repeat turnover in great apes studied with short- and long-read technologies. Mol. Biol. Evol. 36:2415–31
    [Google Scholar]
  17. 17. 
    Cenci G, Siriaco G, Raffa GD, Kellum R, Gatti M. 2003. The Drosophila HOAP protein is required for telomere capping. Nat. Cell Biol. 5:82–84
    [Google Scholar]
  18. 18. 
    Chakraborty M, Chang C-H, Khost DE, Vedanayagam J, Adrion JR et al. 2021. Evolution of genome structure in the Drosophila simulans species complex. Genome Res. 31:380–96
    [Google Scholar]
  19. 19. 
    Charlesworth B, Sniegowski P, Stephan W. 1994. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–20
    [Google Scholar]
  20. 20. 
    Chastain M, Zhou Q, Shiva O, Fadri-Moskwik M, Whitmore L et al. 2016. Human CST facilitates genome-wide RAD51 recruitment to GC-rich repetitive sequences in response to replication stress. Cell Rep 16:1300–14
    [Google Scholar]
  21. 21. 
    Chiolo I, Minoda A, Colmenares SU, Polyzos A, Costes SV, Karpen GH. 2011. Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144:732–44
    [Google Scholar]
  22. 22. 
    Chmátal L, Gabriel SI, Mitsainas GP, Martínez-Vargas J, Ventura J et al. 2014. Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice. Curr. Biol. 24:2295–300
    [Google Scholar]
  23. 23. 
    Comptour A, Moretti C, Serrentino M-E, Auer J, Ialy-Radio C et al. 2014. SSTY proteins co-localize with the post-meiotic sex chromatin and interact with regulators of its expression. FEBS J 281:1571–84
    [Google Scholar]
  24. 24. 
    Cooper JL, Henikoff S. 2004. Adaptive evolution of the histone fold domain in centromeric histones. Mol. Biol. Evol. 21:1712–18
    [Google Scholar]
  25. 25. 
    Dapper AL, Payseur BA. 2019. Molecular evolution of the meiotic recombination pathway in mammals. Evolution 73:2368–89
    [Google Scholar]
  26. 26. 
    Daugherty MD, Malik HS. 2012. Rules of engagement: molecular insights from host-virus arms races. Annu. Rev. Genet. 46:677–700
    [Google Scholar]
  27. 27. 
    Dernburg AF, Sedat JW, Hawley RS. 1996. Direct evidence of a role for heterochromatin in meiotic chromosome segregation. Cell 86:135–46
    [Google Scholar]
  28. 28. 
    Dimitri P, Junakovic N 1999. Revising the selfish DNA hypothesis: new evidence on accumulation of transposable elements in heterochromatin. Trends Genet 15:123–24
    [Google Scholar]
  29. 29. 
    Dubruille R, Orsi GA, Delabaere L, Cortier E, Couble P et al. 2010. Specialization of a Drosophila capping protein essential for the protection of sperm telomeres. Curr. Biol. 20:2090–99
    [Google Scholar]
  30. 30. 
    Ferree PM, Barbash DA. 2009. Species-specific heterochromatin prevents mitotic chromosome segregation to cause hybrid lethality in Drosophila. PLOS Biol 7:e1000234
    [Google Scholar]
  31. 31. 
    Ferree PM, Prasad S. 2012. How can satellite DNA divergence cause reproductive isolation? Let us count the chromosomal ways. Genet. Res. Int. 2012:430136
    [Google Scholar]
  32. 32. 
    Feschotte C, Pritham EJ. 2007. DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet. 41:331–68
    [Google Scholar]
  33. 33. 
    Finseth FR, Nelson TC, Fishman L 2021. Selfish chromosomal drive shapes recent centromeric histone evolution in monkeyflowers. PLOS Genet. 17:e1009418
    [Google Scholar]
  34. 34. 
    Fishman L, Saunders A. 2008. Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. Science 322:1559–62
    [Google Scholar]
  35. 35. 
    Gao G, Cheng Y, Wesolowska N, Rong YS 2011. Paternal imprint essential for the inheritance of telomere identity in Drosophila. PNAS 108:4932–37
    [Google Scholar]
  36. 36. 
    Garrido-Ramos MA. 2017. Satellite DNA: an evolving topic. Genes 8:230
    [Google Scholar]
  37. 37. 
    Gibeaux R, Acker R, Kitaoka M, Georgiou G, van Kruijsbergen I et al. 2018. Paternal chromosome loss and metabolic crisis contribute to hybrid inviability in Xenopus. Nature 553:337–41
    [Google Scholar]
  38. 38. 
    Gómez-Rodríguez M, Jansen LET. 2013. Basic properties of epigenetic systems: lessons from the centromere. Curr. Opin. Genet. Dev. 23:219–27
    [Google Scholar]
  39. 39. 
    Greider CW, Blackburn EH. 1985. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43:405–13
    [Google Scholar]
  40. 40. 
    Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y et al. 2007. A slicer-mediated mechanism for repeat-associated siRNA 5' end formation in Drosophila. Science 315:1587–90
    [Google Scholar]
  41. 41. 
    Hall AE, Kettler GC, Preuss D. 2006. Dynamic evolution at pericentromeres. Genome Res 16:355–64
    [Google Scholar]
  42. 42. 
    Hathaway NA, Bell O, Hodges C, Miller EL, Neel DS, Crabtree GR 2012. Dynamics and memory of heterochromatin in living cells. Cell 149:1447–60
    [Google Scholar]
  43. 43. 
    Heitz E. 1928. Das Heterochromatin der Moose. Jahrb Wiss Botanik 69:762–818
    [Google Scholar]
  44. 44. 
    Helleu Q, Gérard PR, Dubruille R, Ogereau D, Prud'homme B et al. 2016. Rapid evolution of a Y-chromosome heterochromatin protein underlies sex chromosome meiotic drive. PNAS 113:4110–15
    [Google Scholar]
  45. 45. 
    Henikoff S, Ahmad K, Malik HS 2001. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–102
    [Google Scholar]
  46. 46. 
    Hosaka A, Saito R, Takashima K, Sasaki T, Fu Y et al. 2017. Evolution of sequence-specific anti-silencing systems in Arabidopsis. Nat. Commun. 8:2161
    [Google Scholar]
  47. 47. 
    Iwata-Otsubo A, Dawicki-McKenna JM, Akera T, Falk SJ, Chmátal L et al. 2017. Expanded satellite repeats amplify a discrete CENP-A nucleosome assembly site on chromosomes that drive in female meiosis. Curr. Biol. 27:2365–73.e8
    [Google Scholar]
  48. 48. 
    Janssen A, Colmenares SU, Karpen GH. 2018. Heterochromatin: guardian of the genome. Annu. Rev. Cell Dev. Biol. 34:265–88
    [Google Scholar]
  49. 49. 
    Kasinathan B, Colmenares SU III, McConnell H, Young JM, Karpen GH, Malik HS 2020. Innovation of heterochromatin functions drives rapid evolution of essential ZAD-ZNF genes in Drosophila. eLife 9:e63368
    [Google Scholar]
  50. 50. 
    Kelleher ES. 2021. Protein–protein interactions shape genomic autoimmunity in the adaptively evolving Rhino-Deadlock-Cutoff complex. Genome Biol. Evol 13:evab132
    [Google Scholar]
  51. 51. 
    Kelleher ES, Barbash DA, Blumenstiel JP. 2020. Taming the turmoil within: new insights on the containment of transposable elements. Trends Genet 36:474–89
    [Google Scholar]
  52. 52. 
    King TD, Leonard CJ, Cooper JC, Nguyen S, Joyce EF, Phadnis N 2019. Recurrent losses and rapid evolution of the condensin II complex in insects. Mol. Biol. Evol. 36:2195–204
    [Google Scholar]
  53. 53. 
    Klattenhoff C, Xi H, Li C, Lee S, Xu J et al. 2009. The Drosophila HP1 homolog Rhino is required for transposon silencing and piRNA production by dual-strand clusters. Cell 138:1137–49
    [Google Scholar]
  54. 54. 
    Kumon T, Ma J, Akins RB, Stefanik D, Nordgren EDet al 2021. Parallel pathways for recruiting effector proteins determine centromere drive and suppression. Cell 184:490418.e11
    [Google Scholar]
  55. 55. 
    Kursel LE, Malik HS. 2017. Recurrent gene duplication leads to diverse repertoires of centromeric histones in Drosophila species. Mol. Biol. Evol. 34:1445–62
    [Google Scholar]
  56. 56. 
    Kursel LE, Welsh FC, Malik HS 2020. Ancient coretention of paralogs of Cid centromeric histones and Cal1 chaperones in mosquito species. Mol. Biol. Evol. 37:1949–63
    [Google Scholar]
  57. 57. 
    Lee YCG, Karpen GH 2017. Pervasive epigenetic effects of Drosophila euchromatic transposable elements impact their evolution. eLife 6:e25762
    [Google Scholar]
  58. 58. 
    Lee YCG, Leek C, Levine MT. 2017. Recurrent innovation at genes required for telomere integrity in Drosophila. Mol. Biol. Evol. 34:467–82
    [Google Scholar]
  59. 59. 
    Lee YCG, Ogiyama Y, Martins NMC, Beliveau BJ, Acevedo D et al. 2020. Pericentromeric heterochromatin is hierarchically organized and spatially contacts H3K9me2 islands in euchromatin. PLOS Genet 16:e1008673
    [Google Scholar]
  60. 60. 
    Lerat E, Burlet N, Biémont C, Vieira C. 2011. Comparative analysis of transposable elements in the melanogaster subgroup sequenced genomes. Gene 473:100–9
    [Google Scholar]
  61. 61. 
    Levine MT, McCoy C, Vermaak D, Lee YCG, Hiatt MA et al. 2012. Phylogenomic analysis reveals dynamic evolutionary history of the Drosophila heterochromatin protein 1 (HP1) gene family. PLOS Genet 8:e1002729
    [Google Scholar]
  62. 62. 
    Levine MT, Vander Wende HM, Hsieh E, Baker EP, Malik HS. 2016. Recurrent gene duplication diversifies genome defense repertoire in Drosophila. Mol. Biol. Evol. 33:1641–53
    [Google Scholar]
  63. 63. 
    Levine MT, Vander Wende HM, Malik HS 2015. Mitotic fidelity requires transgenerational action of a testis-restricted HP1. eLife 4:e07378
    [Google Scholar]
  64. 64. 
    Levis RW, Ganesan R, Houtchens K, Tolar LA, Sheen FM. 1993. Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75:1083–93
    [Google Scholar]
  65. 65. 
    Lohe AR, Roberts PA. 2000. Evolution of DNA in heterochromatin: the Drosophila melanogaster sibling species subgroup as a resource. Genetica 109:125–30
    [Google Scholar]
  66. 66. 
    Lower SS, McGurk MP, Clark AG, Barbash DA. 2018. Satellite DNA evolution: old ideas, new approaches. Curr. Opin. Genet. Dev. 49:70–78
    [Google Scholar]
  67. 67. 
    Luo S, Zhang H, Duan Y, Yao X, Clark AG, Lu J 2020. The evolutionary arms race between transposable elements and piRNAs in Drosophila melanogaster. BMC Evol. Biol. 20:14
    [Google Scholar]
  68. 68. 
    Maheshwari S, Ishii T, Brown CT, Houben A, Comai L. 2017. Centromere location in Arabidopsis is unaltered by extreme divergence in CENH3 protein sequence. Genome Res 27:471–78
    [Google Scholar]
  69. 69. 
    Maheshwari S, Tan EH, West A, Franklin FCH, Comai L, Chan SWL 2015. Naturally occurring differences in CENH3 affect chromosome segregation in zygotic mitosis of hybrids. PLOS Genet 11:e1004970
    [Google Scholar]
  70. 70. 
    Malik HS, Henikoff S. 2001. Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157:1293–98
    [Google Scholar]
  71. 71. 
    Malik HS, Henikoff S. 2002. Conflict begets complexity: the evolution of centromeres. Curr. Opin. Genet. Dev. 12:711–18
    [Google Scholar]
  72. 72. 
    Malik HS, Vermaak D, Henikoff S. 2002. Recurrent evolution of DNA-binding motifs in the Drosophila centromeric histone. PNAS 99:1449–54
    [Google Scholar]
  73. 73. 
    McDonald JH, Kreitman M. 1991. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–54
    [Google Scholar]
  74. 74. 
    McGurk MP, Dion-Côté A-M, Barbash DA 2021. Rapid evolution at the Drosophila telomere: transposable element dynamics at an intrinsically unstable locus. Genetics 217:iyaa027
    [Google Scholar]
  75. 75. 
    McKinley KL, Cheeseman IM. 2016. The molecular basis for centromere identity and function. Nat. Rev. Mol. Cell Biol. 17:16–29
    [Google Scholar]
  76. 76. 
    Mohn F, Sienski G, Handler D, Brennecke J. 2014. The Rhino-Deadlock-Cutoff complex licenses noncanonical transcription of dual-strand piRNA clusters in Drosophila. Cell 157:1364–79
    [Google Scholar]
  77. 77. 
    Molaro A, Malik HS, Bourc'his D. 2020. Dynamic evolution of de novo DNA methyltransferases in rodent and primate genomes. Mol. Biol. Evol. 37:1882–92
    [Google Scholar]
  78. 78. 
    Nishide K, Hirano T. 2014. Overlapping and non-overlapping functions of condensins I and II in neural stem cell divisions. PLOS Genet 10:e1004847
    [Google Scholar]
  79. 79. 
    Obbard DJ, Maclennan J, Kim K-W, Rambaut A, O'Grady PM, Jiggins FM. 2012. Estimating divergence dates and substitution rates in the Drosophila phylogeny. Mol. Biol. Evol. 29:3459–73
    [Google Scholar]
  80. 80. 
    Oliveira RA, Coelho PA, Sunkel CE. 2005. The condensin I subunit Barren/CAP-H is essential for the structural integrity of centromeric heterochromatin during mitosis. Mol. Cell. Biol. 25:8971–84
    [Google Scholar]
  81. 81. 
    Padeken J, Zeller P, Gasser SM. 2015. Repeat DNA in genome organization and stability. Curr. Opin. Genet. Dev. 31:12–19
    [Google Scholar]
  82. 82. 
    Palmer DK, O'Day K, Trong HL, Charbonneau H, Margolis RL 1991. Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. PNAS 88:3734–38
    [Google Scholar]
  83. 83. 
    Pardue M-L, DeBaryshe PG. 2011. Retrotransposons that maintain chromosome ends. PNAS 108:20317–24
    [Google Scholar]
  84. 84. 
    Parhad SS, Tu S, Weng Z, Theurkauf WE 2017. Adaptive evolution leads to cross-species incompatibility in the piRNA transposon silencing machinery. Dev. Cell 43:60–70.e5
    [Google Scholar]
  85. 85. 
    Parhad SS, Yu T, Zhang G, Rice NP, Weng Z, Theurkauf WE 2020. Adaptive evolution targets a piRNA precursor transcription network. Cell Rep 30:2672–85.e5
    [Google Scholar]
  86. 86. 
    Petersen M, Armisén D, Gibbs RA, Hering L, Khila A et al. 2019. Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects. BMC Evol. Biol. 19:11
    [Google Scholar]
  87. 87. 
    Pontremoli C, Forni D, Cagliani R, Pozzoli U, Clerici M, Sironi M 2018. Evolutionary rates of mammalian telomere-stability genes correlate with karyotype features and female germline expression. Nucleic Acids Res 46:7153–68
    [Google Scholar]
  88. 88. 
    Pontremoli C, Forni D, Pozzoli U, Clerici M, Cagliani R, Sironi M 2021. Kinetochore proteins and microtubule-destabilizing factors are fast evolving in eutherian mammals. Mol. Ecol. 30:1505–15
    [Google Scholar]
  89. 89. 
    Presgraves DC. 2010. The molecular evolutionary basis of species formation. Nat. Rev. Genet. 11:175–80
    [Google Scholar]
  90. 90. 
    Presgraves DC, Stephan W. 2007. Pervasive adaptive evolution among interactors of the Drosophila hybrid inviability gene, Nup96. Mol. Biol. Evol. 24:306–14
    [Google Scholar]
  91. 91. 
    Ravi M, Kwong PN, Menorca RMG, Valencia JT, Ramahi JS et al. 2010. The rapidly evolving centromere-specific histone has stringent functional requirements in Arabidopsis thaliana. Genetics 186:461–71
    [Google Scholar]
  92. 92. 
    Rošić S, Köhler F, Erhardt S. 2014. Repetitive centromeric satellite RNA is essential for kinetochore formation and cell division. J. Cell Biol. 207:335–49
    [Google Scholar]
  93. 93. 
    Ross BD, Rosin L, Thomae AW, Hiatt MA, Vermaak D et al. 2013. Stepwise evolution of essential centromere function in a Drosophila neogene. Science 340:1211–14
    [Google Scholar]
  94. 94. 
    Saint-Leandre B, Christopher C, Levine MT 2020. Adaptive evolution of an essential telomere protein restricts telomeric retrotransposons. eLife 9:e60987
    [Google Scholar]
  95. 95. 
    Saint-Leandre B, Levine MT. 2020. The telomere paradox: stable genome preservation with rapidly evolving proteins. Trends Genet 36:232–42
    [Google Scholar]
  96. 96. 
    Saint-Leandre B, Nguyen SC, Levine MT. 2019. Diversification and collapse of a telomere elongation mechanism. Genome Res 29:920–31
    [Google Scholar]
  97. 97. 
    Satyaki PRV, Cuykendall TN, Wei KHC, Brideau NJ, Kwak H et al. 2014. The Hmr and Lhr hybrid incompatibility genes suppress a broad range of heterochromatic repeats. PLOS Genet 10:e1004240
    [Google Scholar]
  98. 98. 
    Sawamura K. 2012. Chromatin evolution and molecular drive in speciation. Int. J. Evol. Biol. 2012:301894
    [Google Scholar]
  99. 99. 
    Sawamura K, Fujita A, Yokoyama R, Taira T, Inoue YH et al. 1995. Molecular and genetic dissection of a reproductive isolation gene, zygotic hybrid rescue, of Drosophila melanogaster. Jpn. J. Genet. 70:223–32
    [Google Scholar]
  100. 100. 
    Sawamura K, Maehara K, Mashino S, Kagesawa T, Kajiwara M et al. 2010. Introgression of Drosophila simulans nuclear pore protein 160 in Drosophila melanogaster alone does not cause inviability but does cause female sterility. Genetics 186:669–76
    [Google Scholar]
  101. 101. 
    Schueler MG, Swanson W, Thomas PJ, Program NCS, Green ED. 2010. Adaptive evolution of foundation kinetochore proteins in primates. Mol. Biol. Evol. 27:1585–97
    [Google Scholar]
  102. 102. 
    Sproul JS, Khost DE, Eickbush DG, Negm S, Wei X et al. 2020. Dynamic evolution of euchromatic satellites on the X chromosome in Drosophila melanogaster and the simulans clade. Mol. Biol. Evol. 37:2241–56
    [Google Scholar]
  103. 103. 
    Sun S, Ting C-T, Wu C-I. 2004. The normal function of a speciation gene, Odysseus, and its hybrid sterility effect. Science 305:81–83
    [Google Scholar]
  104. 104. 
    Talbert PB, Bryson TD, Henikoff S. 2004. Adaptive evolution of centromere proteins in plants and animals. J. Biol. 3:18
    [Google Scholar]
  105. 105. 
    Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S 2002. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14:1053–66
    [Google Scholar]
  106. 106. 
    Tang S, Presgraves DC. 2009. Evolution of the Drosophila nuclear pore complex results in multiple hybrid incompatibilities. Science 323:779–82
    [Google Scholar]
  107. 107. 
    Teixeira JR, Dias GB, Svartman M, Ruiz A, Kuhn GCS. 2018. Concurrent duplication of Drosophila Cid and Cenp-C genes resulted in accelerated evolution and male germline-biased expression of the new copies. J. Mol. Evol. 86:353–64
    [Google Scholar]
  108. 108. 
    Teytelman L, Eisen MB, Rine J. 2008. Silent but not static: accelerated base-pair substitution in silenced chromatin of budding yeasts. PLOS Genet 4:e1000247
    [Google Scholar]
  109. 109. 
    Thomae AW, Schade GOM, Padeken J, Borath M, Vetter I et al. 2013. A pair of centromeric proteins mediates reproductive isolation in Drosophila species. Dev. Cell 27:412–24
    [Google Scholar]
  110. 110. 
    Ting C-T, Tsaur S-C, Sun S, Browne WE, Chen Y-C et al. 2004. Gene duplication and speciation in Drosophila: evidence from the Odysseus locus. PNAS 101:12232–35
    [Google Scholar]
  111. 111. 
    Ting C-T, Tsaur S-C, Wu M-L, Wu C-I. 1998. A rapidly evolving homeobox at the site of a hybrid sterility gene. Science 282:1501–4
    [Google Scholar]
  112. 112. 
    Ugarković D, Plohl M. 2002. Variation in satellite DNA profiles—causes and effects. EMBO J 21:5955–59
    [Google Scholar]
  113. 113. 
    van de Werken C, van der Heijden GW, Eleveld C, Teeuwssen M, Albert M et al. 2014. Paternal heterochromatin formation in human embryos is H3K9/HP1 directed and primed by sperm-derived histone modifications. Nat. Commun. 5:5868
    [Google Scholar]
  114. 114. 
    van der Lee R, Wiel L, van Dam TJP, Huynen MA. 2017. Genome-scale detection of positive selection in nine primates predicts human-virus evolutionary conflicts. Nucleic Acids Res 45:10634–48
    [Google Scholar]
  115. 115. 
    Vermaak D, Bayes JJ, Malik HS. 2009. A surrogate approach to study the evolution of noncoding DNA elements that organize eukaryotic genomes. J. Hered. 100:624–36
    [Google Scholar]
  116. 116. 
    Vermaak D, Henikoff S, Malik HS 2005. Positive selection drives the evolution of rhino, a member of the heterochromatin protein 1 family in Drosophila. PLOS Genet 1:e9
    [Google Scholar]
  117. 117. 
    Villasante A, Abad JP, Planelló R, Méndez-Lago M, Celniker SE, de Pablos B. 2007. Drosophila telomeric retrotransposons derived from an ancestral element that was recruited to replace telomerase. Genome Res 17:1909–18
    [Google Scholar]
  118. 118. 
    Wang N, Dawe RK 2018. Centromere size and its relationship to haploid formation in plants. Mol. Plant 11:398–406
    [Google Scholar]
  119. 119. 
    Watanabe Y. 2005. Sister chromatid cohesion along arms and at centromeres. Trends Genet 21:405–12
    [Google Scholar]
  120. 120. 
    Wei KHC, Lower SE, Caldas IV, Sless TJS, Barbash DA, Clark AG. 2018. Variable rates of simple satellite gains across the Drosophila phylogeny. Mol. Biol. Evol. 35:925–41
    [Google Scholar]
  121. 121. 
    Wei KHC, Reddy HM, Rathnam C, Lee J, Lin D et al. 2017. A pooled sequencing approach identifies a candidate meiotic driver in Drosophila. Genetics 206:451–65
    [Google Scholar]
  122. 122. 
    Werren JH. 2011. Selfish genetic elements, genetic conflict, and evolutionary innovation. PNAS 108:Suppl. 210863–70
    [Google Scholar]
  123. 123. 
    Yamaki T, Yasuda GK, Wakimoto BT. 2016. The deadbeat paternal effect of uncapped sperm telomeres on cell cycle progression and chromosome behavior in Drosophila melanogaster. Genetics 203:799–816
    [Google Scholar]
  124. 124. 
    Yang P, Wang Y, Macfarlan TS 2017. The role of KRAB-ZFPs in transposable element repression and mammalian evolution. Trends Genet 33:871–81
    [Google Scholar]
  125. 125. 
    Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24:1586–91
    [Google Scholar]
  126. 126. 
    Yoshida K, Ishikawa A, Toyoda A, Shigenobu S, Fujiyama A, Kitano J 2019. Functional divergence of a heterochromatin-binding protein during stickleback speciation. Mol. Ecol. 28:1563–78
    [Google Scholar]
  127. 127. 
    Yunis JJ, Yasmineh WG. 1971. Heterochromatin, satellite DNA, and cell function. Science 174:1200–9
    [Google Scholar]
  128. 128. 
    Zhang Z, Wang J, Schultz N, Zhang F, Parhad SS et al. 2014. The HP1 homolog Rhino anchors a nuclear complex that suppresses piRNA precursor splicing. Cell 157:1353–63
    [Google Scholar]
  129. 129. 
    Zhou Q, Ellison CE, Kaiser VB, Alekseyenko AA, Gorchakov AA, Bachtrog D. 2013. The epigenome of evolving Drosophila neo-sex chromosomes: dosage compensation and heterochromatin formation. PLOS Biol 11:e1001711
    [Google Scholar]
/content/journals/10.1146/annurev-genet-071719-020301
Loading
/content/journals/10.1146/annurev-genet-071719-020301
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error