Skip to main content
Log in

ASNN-FRR: A traffic-aware neural network for fastest route recommendation

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

Fastest route recommendation (FRR) is an important task in urban computing. Despite some efforts are made to integrate A algorithm with neural networks to learn cost functions by a data driven approach, they suffer from inaccuracy of travel time estimation and admissibility of model, resulting sub-optimal results accordingly. In this paper, we propose an ASNN-FRR model that contains two powerful predictors for g(⋅) and h(⋅) functions of A* algorithm respectively. Specifically, an adaptive graph convolutional recurrent network is used to accurately estimate the travel time of the observed path in g(⋅). Toward h(⋅), the model adopts a multi-task representation learning method to support origin-destination (OD) based travel time estimation, which can achieve high accuracy without the actual path information. Besides, we further consider the admissibility of A* algorithm, and utilize a rational setting of the loss function for h(⋅) estimator, which is likely to return a lower bound value without overestimation. At last, the two predictors are fused into the A algorithm in a seamlessly way to help us find the real-time fastest route. We conduct extensive experiments on two real-world large scale trip datasets. The proposed approach clearly outperforms state-of-the-art methods for FRR task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bai L, Yao L, Kanhere S, Wang X, Sheng Q et al (2019) Stg2seq:, Spatial-temporal graph to sequence model for multi-step passenger demand forecasting. arXiv:1905.10069

  2. Bai L, Yao L, Kanhere SS, Yang Z, Chu J, Wang X (2019) Passenger demand forecasting with multi-task convolutional recurrent neural networks. In: Pacific-asia conference on knowledge discovery and data mining, Springer, pp 29–42

  3. Bai L, Yao L, Li C, Wang X, Wang C (2020) Adaptive graph convolutional recurrent network for traffic forecasting. arXiv:2007.02842

  4. Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. Journal of machine learning research 13(2):281–305

  5. Box GE, Jenkins GM, Reinsel GC, Ljung GM (2015) Time series analysis: forecasting and control. John Wiley & Sons

  6. Chen L, Shang S, Jensen CS, Yao B, Zhang Z, Shao L (2019) Effective and efficient reuse of past travel behavior for route recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 488–498

  7. Chen L, Shang S, Yang C, Li J (2020) Spatial keyword search: a survey. GeoInformatica 24(1):85–106

    Article  Google Scholar 

  8. Chen X, Xu J, Zhou R, Chen W, Fang J, Liu C (2021) Trajvae: a variational autoencoder model for trajectory generation. Neurocomputing 428:332–339

    Article  Google Scholar 

  9. Chen X, Xu J, Zhou R, Zhao P, Liu C, Fang J, Zhao L (2020) S 2 r-tree: a pivot-based indexing structure for semantic-aware spatial keyword search. GeoInformatica 24(1):3–25

    Article  Google Scholar 

  10. Ding B, Yu JX, Qin L (2008) Finding time-dependent shortest paths over large graphs. In: Proceedings of the 11th international conference on Extending database technology: Advances in database technology, pp 205–216

  11. Guo S, Lin Y, Feng N, Song C, Wan H (2019) Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 33, pp 922–929

  12. Hunter T, Herring R, Abbeel P, Bayen A (2009) Path and travel time inference from gps probe vehicle data. NIPS Analyzing Networks and Learning with Graphs 12(1):2

    Google Scholar 

  13. Jindal I, Chen X, Nokleby M, Ye J et al (2017) A unified neural network approach for estimating travel time and distance for a taxi trip. arXiv:1710.04350

  14. Kanoulas E, Du Y, Xia T, Zhang D (2006) Finding fastest paths on a road network with speed patterns. In: 22Nd international conference on data engineering (ICDE’06), IEEE, pp 10–10

  15. Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv:1609.02907

  16. Li K, Shang SS et al (2020) Towards alleviating traffic congestion:, Optimal route planning for massive-scale trips. Traffic 7(v8):v9

    Google Scholar 

  17. Li L, Wang S, Zhou X (2020) Fastest path query answering using time-dependent hop-labeling in road network. IEEE Transactions on Knowledge and Data Engineering

  18. Li Y, Fu K, Wang Z, Shahabi C, Ye J, Liu Y (2018) Multi-task representation learning for travel time estimation. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 1695–1704

  19. Li Y, Xu JJ, Zhao PP, Fang JH, Chen W, Zhao L (2020) Atlrec: an attentional adversarial transfer learning network for cross-domain recommendation. J Comput Sci Technol 35(4):794–808

    Article  Google Scholar 

  20. Li Y, Xu JJ, Zhao PP, Fang JH, Chen W, Zhao L (2020) Atlrec: an attentional adversarial transfer learning network for cross-domain recommendation. J Comput Sci Technol 35(4):794–808

    Article  Google Scholar 

  21. Li Y, Yu R, Shahabi C, Liu Y (2017) Diffusion convolutional recurrent neural network:, Data-driven traffic forecasting. arXiv:1707.01926

  22. Liao B, Zhang J, Wu C, McIlwraith D, Chen T, Yang S, Guo Y, Wu F (2018) Deep sequence learning with auxiliary information for traffic prediction. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp 537–546

  23. Liu J, Zhao K, Sommer P, Shang S, Kusy B, Lee JG, Jurdak R (2016) A novel framework for online amnesic trajectory compression in resource-constrained environments. IEEE Trans Knowl Data Eng 28 (11):2827–2841

    Article  Google Scholar 

  24. Liu S, Johns E, Davison AJ (2019) End-to-end multi-task learning with attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 1871–1880

  25. Lv Z, Xu J, Zheng K, Yin H, Zhao P, Zhou X (2018) Lc-rnn: a deep learning model for traffic speed prediction. In: IJCAI, pp 3470–3476

  26. Mallick T, Balaprakash P, Rask E, Macfarlane J (2019) Graph-partitioning based diffusion convolution recurrent neural network for large-scale traffic forecasting. arXiv:1909.11197

  27. Nannicini G, Delling D, Liberti L, Schultes D (2008) Bidirectional a* search for time-dependent fast paths. In: International workshop on experimental and efficient algorithms, Springer, pp 334–346

  28. Niu X, Zhu Y, Cao Q, Zhang X, Xie W, Zheng K (2015) An online-traffic-prediction based route finding mechanism for smart city. International Journal of Distributed Sensor Networks 11(8):970,256

    Article  Google Scholar 

  29. Rahmani M, Jenelius E, Koutsopoulos HN (2013) Route travel time estimation using low-frequency floating car data. In: 16Th international IEEE conference on intelligent transportation systems (ITSC 2013), IEEE, pp 2292–2297

  30. Shang S, Chen L, Jensen CS, Wen JR, Kalnis P (2017) Searching trajectories by regions of interest. IEEE Trans Knowl Data Eng 29(7):1549–1562

    Article  Google Scholar 

  31. Shang S, Chen L, Wei Z, Jensen CS, Wen JR, Kalnis P (2015) Collective travel planning in spatial networks. IEEE Trans Knowl Data Eng 28(5):1132–1146

    Article  Google Scholar 

  32. Shang S, Chen L, Wei Z, Jensen CS, Zheng K, Kalnis P (2017) Trajectory similarity join in spatial networks. Proceedings of the VLDB Endowment 10(11):1178–1189

  33. Shang S, Chen L, Wei Z, Jensen CS, Zheng K, Kalnis P (2018) Parallel trajectory similarity joins in spatial networks. The VLDB J 27 (3):395–420

    Article  Google Scholar 

  34. Shang S, Ding R, Zheng K, Jensen CS, Kalnis P, Zhou X (2014) Personalized trajectory matching in spatial networks. The VLDB J 23 (3):449–468

    Article  Google Scholar 

  35. Song X, Xu J, Zhou R, Liu C, Zheng K, Zhao P, Falkner N (2020) Collective spatial keyword search on activity trajectories. GeoInformatica 24(1):61–84

    Article  Google Scholar 

  36. Sun J, Xu J, Zhou R, Zheng K, Liu C (2018) Discovering expert drivers from trajectories. In: 2018 IEEE 34Th international conference on data engineering (ICDE), IEEE, pp 1332–1335

  37. Tang J, Zou Y, Ash J, Zhang S, Liu F, Wang Y (2016) Travel time estimation using freeway point detector data based on evolving fuzzy neural inference system. PloS One 11(2):e0147,263

    Article  Google Scholar 

  38. Wang F, Xu J, Liu C, Zhou R, Zhao P (2021) On prediction of traffic flows in smart cities: a multitask deep learning based approach. World Wide Web 24(3):805–823

    Article  Google Scholar 

  39. Wang H, Tang X, Kuo YH, Kifer D, Li Z (2019) A simple baseline for travel time estimation using large-scale trip data. ACM Trans Intell Syst Technol (TIST) 10(2):1–22

    Google Scholar 

  40. Wang Y, Zheng Y, Xue Y (2014) Travel time estimation of a path using sparse trajectories. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 25–34

  41. Wu CH, Ho JM, Lee DT (2004) Travel-time prediction with support vector regression. IEEE Trans Intell Transp Syst 5(4):276–281

    Article  Google Scholar 

  42. Wu N, Wang J, Zhao WX, Jin Y (2019) Learning to effectively estimate the travel time for fastest route recommendation. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp 1923–1932

  43. Wu Z, Pan S, Long G, Jiang J, Zhang C (2019) Graph wavenet for deep spatial-temporal graph modeling. arXiv:1906.00121

  44. Xu J, Chen J, Zhou R, Fang J, Liu C (2019) On workflow aware location-based service composition for personal trip planning. Futur Gener Comput Syst 98:274–285

    Article  Google Scholar 

  45. Xu J, Chen J, Zhou R, Fang J, Liu C (2019) On workflow aware location-based service composition for personal trip planning. Futur Gener Comput Syst 98:274–285

    Article  Google Scholar 

  46. Xu J, Zhao J, Zhou R, Liu C, Zhao P, Zhao L (2021) Predicting destinations by a deep learning based approach. IEEE Trans Knowl Data Eng 33(02):651–666

    Article  Google Scholar 

  47. Xu J, Zhao J, Zhou R, Liu C, Zhao P, Zhao L (2021) Predicting destinations by a deep learning based approach. IEEE Trans Knowl Data Eng 33(02):651–666

    Article  Google Scholar 

  48. Xu S, Zhang R, Cheng W, Xu J (2020) Mtlm: a multi-task learning model for travel time estimation. GeoInformatica, pp 1–17

  49. Xu S, Zhang R, Cheng W, Xu J (2020) Mtlm: a multi-task learning model for travel time estimation. GeoInformatica, pp 1–17

  50. Yao H, Wu F, Ke J, Tang X, Jia Y, Lu S, Gong P, Ye J, Li Z (2018) Deep multi-view spatial-temporal network for taxi demand prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 32

  51. Yu B, Yin H, Zhu Z (2017) Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv:1709.04875

  52. Yuan H, Li G, Bao Z, Feng L (2020) Effective travel time estimation: When historical trajectories over road networks matter. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, pp 2135–2149

  53. Yuan J, Zheng Y, Xie X, Sun G (2011) Driving with knowledge from the physical world. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 316–324

  54. Yuan J, Zheng Y, Xie X, Sun G (2011) T-drive: Enhancing driving directions with taxi drivers’ intelligence. IEEE Trans Knowl Data Eng 25(1):220–232

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Key R&D Program of China (No. 2018YFB2100400), Industrial Internet Innovation and Development Project of China (2019), Guangxi Key Laboratory of Cryptography and Information Security (No.GXIS20 2119), National Natural Science Foundation of China(No.62102276).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Li, Jianfeng Qu or Lihua Yin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Li, C., Huang, H. et al. ASNN-FRR: A traffic-aware neural network for fastest route recommendation. Geoinformatica 27, 39–60 (2023). https://doi.org/10.1007/s10707-021-00458-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-021-00458-7

Keywords

Navigation