Skip to main content
Log in

Sediment budget of a cuspate shoreline and its influence on spit development—Lagoa dos Patos, Brazil

  • Original
  • Published:
Geo-Marine Letters Aims and scope Submit manuscript

Abstract

The coastal sediment budget is an essential tool to understand erosion/accretion patterns along coastlines and to predict future changes. This work is one of the first approaches of a coastal sediment budget study in a cuspate shoreline covering the whole embayment-spit system. Taking this into consideration, this study aims to estimate the main longshore sediment transport patterns and propose a conceptual model of the regional sediment budget of the lagoon cuspate shoreline (Lagoa dos Patos-Brazil), while also analyzing its influence on the spit development. To do so, representative wind conditions (direction and speed) were used to force a validated lagoon wave model utilizing the process-based modeling suite Delft3D. The potential longshore sediment transport was computed along widely distributed cross-sections, based on representative wave cases, and the annual sediment budget was estimated. The results showed a pattern of inter-related source and storage areas along the bay beaches and the occurrence of short-term nodal zones (convergent and divergent), which have an important control on the regional sediment budget of the coast. The central littoral cells of the embayments behave as temporary sediment storage areas, while the southern littoral cells act as sources of sediments to the spits. The findings of this study demonstrate the important control that short-term nodal zones have on the annual coastal sediment budget of complex coastline shapes and, the importance of the budget of the adjacent updrift cell to the sediment supply for the spits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: ESRI, DigitalGlobe, GeoEye, Earthstar Geographics, the National Centre for Space Studies (CNES)/Airbus DS, U.S. Department of Agriculture, U.S. Geological Survey, AeroGRID, IGN Spain, and the GIS User Community

Fig. 2
Fig. 3

Source: modified from Miranda et al. (2020)

Fig. 4

Source: Miranda et al. (2020)

Fig. 5
Fig. 6
Fig. 7

source: ESRI, DigitalGlobe, GeoEye, Earthstar Geographics, the National Centre for Space Studies (CNES)/Airbus DS, U.S. Department of Agriculture, U.S. Geological Survey, AeroGRID, IGN Spain, and the GIS User

Similar content being viewed by others

References

  • Andrade Neto JS, Rigon LT, Toldo EE Jr, Schetinni F (2012) Descarga sólida em suspensão do sistema fluvial do Guaíba, RS, e sua variabilidade temporal. Pesquisas Em Geociências 39(2):161–171

    Article  Google Scholar 

  • Aronow S (1982) Lakes, coastal morphology. In: beaches and coastal geology. Encyclopedia of Earth Science. Springer, Boston, MA.

  • Ashton AD, Murray AB (2006) High-angle wave instability and emergent shoreline shapes: 1. Modeling of sand waves, flying spits, and capes. J Geophys Res 111(F04011):1–19. https://doi.org/10.1029/2005JF000422

    Article  Google Scholar 

  • Ashton AD, Murray AB (2006) High-angle wave instability and emergent shoreline chapes: 2. Wave climate analysis and comparisons to nature. J Geophys Res 111(F04012):1–17. https://doi.org/10.1029/2005JF000423

    Article  Google Scholar 

  • Ashton A, Murray As’ B, Arnault O (2001) Formation of coastline features by larga-scale instabilities induced by high-angle waves. Nature 414(6861):296–300. https://doi.org/10.1038/35104541

    Article  Google Scholar 

  • Ashton AD, Murray B, Littlewood R, Lewis DA, Hong P (2009) Fetch-limited self-organization of elongated water bodies. The Geological Society of America 37(2):187–190. https://doi.org/10.1130/G2599A.1

    Article  Google Scholar 

  • Ashton AD, Ashton AD et al. (2016) On a neck, on a spit: controls on the shape of free spits, https://esurf.copernicus.org/articles/4/193/2016/esurf-4-193-2016.pdf 

  • Battjes JA, Janssen JPFM (1978) Energy loss and set-up due to breaking of rambom waves. In: Proceedings of 16th Conference on Coastal Engineering, Hamburg, Germany, pp 569–587

  • Benedet L, Dobrochinski JPF, Walstra DJR, Klein AHF, Ranasingle R (2016) Coast Eng 112:69–86. https://doi.org/10.1016/j.coastaleng.2016.02.005

    Article  Google Scholar 

  • Bhuvanagiri P, Pichika S, Akkur R, Chaganti K, Madhusoodh R, Pusapati SV (2018) Chapter 9-integrated approach for modeling coastal lagoons: a case for Chilka Lake, India. Handbook of Statistics 39 342–402. https://doi.org/10.1016/bs.host.2018.06.005.

  • Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research: Oceans 104(C4) 7649–7666. https://doi.org/10.1029/98JC02622

  • Calliari LJ, Winterwerp JC, Fernandes E, Cuchiara D, Vinzon SB, Sperle M, Holland KT (2008) Fine grain sediment transport and deposition in the Patos Lagoon-Cassino beach sedimentary system. Cont Shelf Res 29(3):515–529

    Article  Google Scholar 

  • Carter RWG (1988) Tidal and Lake Coasts. In: Carter RWG (ed) Coastal environments; an introduction to the physical, ecological and cultural systems of coastlines. Academic Press Inc., San Diego, pp 151–198

    Google Scholar 

  • Delaney PJV (1965) Fisiografia e Geologia de Superfície da Planície Costeira do Rio Grande do Sul. Publicação Especial da Escola de Geologia (6). Porto Alegre, UFRGS, 105.

  • Dillenburg SR, Barboza EG, Tomazelli LJ, Hesp PA, Clert LCP, Ayup-Zouain RN (2009) The Holocene coastal barriers of Rio Grande do Sul, Chapter 3

  • Eldeberky, Y. (1996). Nonlinear transformations of wave spectra in the nearshore zone, Ph.D Thesis, Fac. of Civil Engineering, Delft University of Technology, 203

  • Eldeberky Y, Battjes JA (1995) Spectral modelling of wave breaking: application to Boussinesq equation. J Geophys Res 101(C1):1253–1264. https://doi.org/10.1029/95JC03219

    Article  Google Scholar 

  • Fernandes EHL, Mariño-Tapia I, Dyer KR, Moller OO (2004) The attenuation of tidal and subtidal oscillations in the Patos Lagoon estuary. Ocean Dyn 54(3–4):348–359. https://doi.org/10.1007/s10236-004-0090-y

    Article  Google Scholar 

  • Hasselman K, Barnett TP, Bouws E et al (1973) Measurements of win-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutsches Hydrographisches Institut, Hamburg 12(A8):1–95

    Google Scholar 

  • Jackson NL, Nordstom KF (1992) Site specific controls on wind and wave processes and beach mobility on estuarine beaches in New Jersey. J Coast Res 8(1):88–98

    Google Scholar 

  • Kjerve B (1994) Coastal Lagoons. In: Kjerve, B. (Eds). Coastal lagoon processes, chapter 1, Elsevier Science Publishers

  • Komen G, Hasselmann S, Hasselmann K (1984) On the existence of a fully developed wind-sea spectrum. Journal of Physical Oceanography 14:1271–1285

    Article  Google Scholar 

  • Lemke, N. Estudos dos processos costeiros envolvidos no fechamento da foz do arroyo Carahá, Lagoa dos Patos, São Lourenço do Sul – RS.

  • Lesser GR, Roelvink JA, van Kester JATM, Stelling GS (2004) Development and validation of a three-dimentional morphological model. Coast Eng 51(8):883–915. https://doi.org/10.1016/j.coastaleng.2004.07.014

    Article  Google Scholar 

  • Lima SF, Almeita LESB, Toldo EE Jr (2001) Estimativa da capacidade do transporte longitudinal de sedimentos a partir de dados de ondas para a costa do Rio Grande do Sul [Estimate of longshore sediment transport from waves data to the Rio Grande do Sul coast]. Pesqui Geocienc 28:99–107

    Article  Google Scholar 

  • Manzolli, R. P.; Portz, L.; Bitencourt, V.J.B.; Leal. E.A.; Martins, E,M.; Silva, A.B.; Barboza, E.G.; Caron, F.; Carrió, J.A.; Sawakuchi, A.O. 2018. Process control in the geneses and evolution of a lagoon-barrier system of the Patos lagoon, South of Brazil. Journal of Coastal Research, In: Shim, J.-S.; Chun, I., and Lim, H.S. (eds.), Proceedings from the International Coastal Symposium (ICS) 2018 (Busan, Republic of Korea). Journal of Coastal Research, Special Issue No. 85, pp. 651–655. Coconut Creek (Florida).

  • Mėžinė J, Ferrarin C, Vaiciute D, Idelyte R, Zemlys P, Umgiesser G (2019) Sediment transport mechanisms in a lagoon with high river discharge and sediment loading. Water 11:1–24. https://doi.org/10.3390/w11101970

    Article  Google Scholar 

  • Mc Ninch JE, Luettich JREA (2000) Physical processes around a cuspate foreland: implications to the evolution and long-term maintenance of a cape-associated shoal. Cont Shelf Res 20:2367–2389. https://doi.org/10.1016/S0278-4343(00)00061-3

  • McNinch JE, Wells JT (1999) Sedimentary processes and depositional history of a cape-associated shoal, Cape Lookout, North Carolina. Mar Geol 158:233–252

    Article  Google Scholar 

  • Miranda IM, Toldo EE Jr, Klein AHF, Vieira da Silva G (2019) Shoreline evolution of lagoon sandy spits andadjacent beaches, Lagoa dos Patos, Brazil. Journal of Coastal Research, 35(5), 1010–1023. Coconut Creek (Florida), ISSN0749–0208

  • Miranda IM, Toldo EE Jr, Klein AHF, Strauss D, Vieira da Silva GV (2020) The role of cuspate spits on wave attenuation and energy redistribution in a coastal lagoon, Lagoa dos Patos, Brazil. GeoMarine Letters 40:1069–1086. https://doi.org/10.1007/s00367-019-00632-9

    Article  Google Scholar 

  • Moller OO, Lorenzzentti JA, Stech JL, Mata MM (1996) The Patos Lagoon summertime circulation and dynamics. Cont Shelf Res 16(3):335–351. https://doi.org/10.1016/0278-4343(95)00014-R

    Article  Google Scholar 

  • Moller OO, Castaing P, Salomon JC, Lazure P (2001) The influence of local and non-local forcing effects on the subtidal circulation of Patos Lagoon. Estuaries 24(2):297–311

    Article  Google Scholar 

  • Motta LM, Toldo EE Jr., Almeida LES, Nunes JC (2015) Sandy sediment budget of the midcoast of Rio Grande do Sul, Brasil

  • Murray AB, Ashton  AD (2013) Instability and finite-amplitude self-organization of large-scale coastline shapes. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences 371(2004) 20120363-10.1098/rsta.2012.0363

  • Oliveira EB, Nicolodi JL, Marinho C, Machado Junior VC (2018) Caracterização sedimentológica da praia de Arambaré, Laguna dos Patos, Rio Grande do Sul, Brasil. [Sedimentological Caracterization of the Arambaré Sandy Beach, Patos Lagoon, Rio Grande do Sul, Brasil] Revista Brasileira de Geomorfologia, 19 (4), pp. 665–678

  • Papadimitriou A, Panagopoulos L, Chondros M, Tsoukala V (2020) A wave input-reduction method incorporating initiation of sediment motion. Journal of Marine Science and Engineering 8:597. https://doi.org/10.3390/jmse8080597

    Article  Google Scholar 

  • Park J-Y, Wells JT (2005) Longshore transport at Cape Lookout, North Carolina: shoal evolution and the regional sediment budget. Journal of Coastal Research, 21(1), 1–17. West Palm Beach (Florida)

  • Park J-Y, Wellss JT (2007) Spit growth and downdrift erosion: results of longshore transport modeling and morphologic analysis at the cape lookout cuspate foreland. J Coastal Res 23(3):553–568. https://doi.org/10.2112/03-0116.1

    Article  Google Scholar 

  • Queiroz B, Scheel B, Caires S, Walstra DJR, Olij D, Yoo J, Boer WP (2019) Performance evaluation of wave input reduction techniques for modeling inter-annual sandbar dynamics. Journal of Marine Science and Engineering, 7 (5). https://doi.org/10.3390/jmse7050148

  • Randazzo G, Jackson DWT,  Cooper JA (2015) Sand and gravel spits. London: Springer, 344p

  • Rede Ondas (2020) Universidade Federal de Rio Grande (FURG). http://redeondas.furg.br

  • Ris RC, Holthuijsen LH, Booji N (1999) A Third-generation wave model for coastal regions, 2. Verification. J Geophys Res 104(C4):7667–7681. https://doi.org/10.1029/1998JC900123

    Article  Google Scholar 

  • Roelvink JA (2006) Coastal morphodynamic evolution techniques. Coast Eng 53(2):277–287. https://doi.org/10.1016/j.coastaleng.2005.10.015

    Article  Google Scholar 

  • Rosati JD (2005) Concepts in sediment budgets. J Coastal Res 21(2):307–322

    Article  Google Scholar 

  • Rosen PS (1972) Evolution and Processes of Coatue Beach, Nantucket Island, Massachusetts: a cuspate spit shoreline. Master Thesis in Science – University of Massachusetts, Massachusetts, New England, 203

  • Rosen PS (1975) Origin and progress of cuspate spit shorelines. In: Cronin, L.E. (ed), Estuarine research 2. New York, San Francisco: Academic press, p. 77–92. doi: https://doi.org/10.13140/2.1.3070.7208

  • Saraiva JMB, Bedran C, Carneiro C (2003) Monitoring storm surges on Cassino Beach, RS, Brazil. In: Klein, A.H.F.; Finkl, C.W.; Rorig, L.R.; Santana, G.G.; Diehl, F.L., and Calliari, L.J. (eds.), Proceedings of the Brazilian symposium on sandy beaches: morphodynamics, ecology, uses, hazards and management. J Coast Res Special Issue 35 323–331

  • Smith NP (1994) Water, salt and heat balance of coastal lagoons. Elsevier Oceanography Series, Chapter 4, vol. 60, pp. 69–101

  • Toldo EE Jr (1991) Morfodinâmica da Laguna dos Patos, Rio Grande do Sul. Pesquisas Em Geociências 18(1):58–63

    Article  Google Scholar 

  • Toldo Jr., EE (1994) Sedimentação, Predição do Padrão de Ondas, e Dinâmica Sedimentar da Antepraia e Zona de Surfe do Sistema Lagunar. Tese de Doutorado. Porto Alegre, PPGGEO, UFRGS, 183

  • Toldo Jr, EE (2000) Holocene sedimentation in Lagoa dos Patos Lagoon, Rio Grande do Sul, Brazil. J Coast Res 16 (0)

  • Toldo Jr., EE, Almeida LESB, Corrêa ICS (2003) Forecasting shoreline changes of Lagoa dos Patos lagoon, Brazil. In: Finkl, C. and Klein, A.H.F.(eds), Proceedings of the Brazilian symposium on sandy beaches: morphodynamics, ecology, uses, hazards and management (Itajaí, SC-Brazil). J Coast Res Special Issue 35 43–50

  • Toldo EE Jr, Almeida LESB, Corrêa ICS, Ferreira ER, Gruber NLS (2006a) Wave prediction along Lagoa dos Patos coastline, southern Brazil. Atlântica (rio Grande) 28(2):87–95

    Google Scholar 

  • Toldo Jr. EE, Nicolodi JL, Almeida LESB, Corrêa ICS, Esteves LS (2006b) Coastal dunes and shorefacce width as a function of longshore transport. Journal of Coastal Research, SI 39. In: Proceedigns of the 8th international Coastal Symposium), 390–394. Itajaí, SC, Brazil, ISSN 0749–0208

  • Tomazelli LJ, Dillemburg SR, Villwock JA (2004) Geological evolution of Rio Grande do Sul coastal plain, Southern Brazil. Journal of Coastal Research. Special Issue No. 39. Proceedings of the 8th International Coastal Symposium (ICS 2004), Vol. I (Winter 2006), pp. 275–278

  • Uda T, Serizawa M, Miyahara S (2014) Development of sand spits and cuspate forelands with rhythmic shapes and their deformation by effects of construction o coastal setructures. In: AWREJCEWICS, J. Computational and Numerical Simulations, London, UK: IntechOpen, Cap. 19. p. 419-450. https://doi.org/10.5772/57043

  • Uriarte A, Collins M, Cearreta A, Bald J, Evans G (2004) Sediment supply, transport and deposition: contemporary and Late Quaternary evolution. 97–13

  • USACE_U.S.Army Corps of Engineers (1984) Shore protection manual; Volume I. (Chapter 1 Through 5)

  • van Rijn LC (1993) Principles of sediment transport in rivers, estuaries and coastal seas. Aqua Publications, Amsterdam

    Google Scholar 

  • Vieira da Silva G, Murray T, Strauss D (2018) Longshorewave variabilityalong non-straight coastlines. Estuar Coast Shelf Sci 212(15):318–328. https://doi.org/10.1016/j.ecss.2018.07.022

    Article  Google Scholar 

  • van der Westhuysen AJ, Zijlema M, Battjes JA (2007) Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water. Coast Eng 54:151–170. https://doi.org/10.1016/j.coastaleng.2006.08.006

    Article  Google Scholar 

  • Villwock JA (1984) Geology of the Coastal Province of Rio Grande do Sul. Southern Brazil A Synthesis Pesquisas 16:5–49

    Google Scholar 

  • Zenkovich VP (1959) On the genesis of the cuspate spits along lagoon shores. J Geol 67(3):269–277

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the general improvement of this manuscript (methods, results, discussion, and figures) through the constructive, and detailed comments from two anonymous reviewers. We especially thank the meticulous and insightful comments and suggestions, performed by Review#01. The authors also would like to acknowledge and PFRH-Petrobrás program n° PB-215, for the student grant provided during the development of the first author’s Ph.D. thesis, and the Griffith Centre for Coastal Management (GCCM), Griffith University (AU) for the internship opportunity which made possible the present work, and the research agency CAPES for funding. Also, thank you to the comittee members of the first author’s Ph.D. thesis, Dr. Susana Costas, Dr. Cristiano Fick and Dr. Lauro Calliari, for their valuable comments and recommendations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inaiê Malheiros Miranda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, I.M., Toldo, E., da Fontoura Klein, A.H. et al. Sediment budget of a cuspate shoreline and its influence on spit development—Lagoa dos Patos, Brazil. Geo-Mar Lett 42, 4 (2022). https://doi.org/10.1007/s00367-021-00724-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00367-021-00724-5

Navigation