Skip to main content
Log in

Effect of plasmonic coupling in different assembly of gold nanorods studied by FDTD

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

The influence of the orientation of gold nanorods in different assemblies has been investigated using the finite difference time domain (FDTD) simulation method. To understand the relative orientation, we vary the size and angle in dimer geometries. Significant effects of plasmon coupling emerged in longitudinal resonances having end-to-end configurations of gold nanorods. The effect of orientational plasmon coupling in dimers gives rise to both bonding and anti-bonding plasmon modes. Effects of various geometries like primary monomer, dimer, trimer, and tetramer structures have been explored and compared with their higher nanorod ensembles. The asymmetric spectral response in a 4 × 4 gold nanorods array indicates a Fano-like resonance. The variation of gap distance in ordered arrays allowed modulation of the Fano resonance mode. The plasmon modes’ resonance wavelength and field enhancement have been tuned by varying the gap distance, angular orientation, size irregularity between the nanorods, and nanorod numbers in an array. The integrated nanostructures studied here are not only significant for fundamental research but also applications in plasmon-based devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface-enhanced raman scattering. Science 275:1102–1106. https://doi.org/10.1126/science.275.5303.1102

    Article  CAS  Google Scholar 

  2. Wang X, Yao L, Chen X, Dai H, Wang M, Zhang L, Ni Y, Xiao L, Han J (2019) Gap-induced giant third-order optical nonlinearity and long electron relaxation time in random-distributed gold nanorod arrays. ACS Appl Mater Interfaces 11:32469–32474. https://doi.org/10.1021/acsami.9b08935

    Article  CAS  Google Scholar 

  3. Krivenkov V, Goncharov S, Samokhvalov P, Sanchez-Iglesias A, Grzelczak M, Nabiew I, Rakovich Y (2019) Enhancement of biexciton emission due to long-range interaction of single quantum dots and gold nanorods in a thin-film hybrid nanostructure. J Phys Chem Lett 10:481–486. https://doi.org/10.1021/acs.jpclett.8b03549

    Article  CAS  Google Scholar 

  4. Bao YJ, Yu Y, Xu HF, Lin QL, Wang Y, Li JT, Zhou ZK, Wang X (2018) Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching and encoding. Adv Funct Mater 28:1805306. https://doi.org/10.1002/adfm.201805306

    Article  CAS  Google Scholar 

  5. Yao LH, Zhang JP, Dai HW, Wang MS, Zhang LM, Wang X, Han JB (2018) Plasmon-enhanced versatile optical nonlinearities in a Au–Ag–Au multi-segmental hybrid structure. Nanoscale 10:12695–12703. https://doi.org/10.1039/C8NR02938E

    Article  CAS  Google Scholar 

  6. Dai H, Zhang L, Wang Z, Wang X, Zhang J, Gong H, Han JB, Han Y (2017) Linear and nonlinear optical properties of silver-coated gold nanorods. J Phys Chem C 121:12358–12364. https://doi.org/10.1021/acs.jpcc.7b00295

    Article  CAS  Google Scholar 

  7. Ma ZW, Chi C, Yu Y, Zhong ZQ, Yao LH, Zhou ZK, Wang X, Han YB, Han JB (2016) Near-UV-enhanced broad-band large third-order optical nonlinearity in aluminum nanorod array film with sub-10 nm gaps. Opt Express 24:5387–5394. https://doi.org/10.1364/OE.24.005387

    Article  CAS  Google Scholar 

  8. Zhou ZK, Liu J, Bao YJ, Wu L, Png CE, Wang XH, Qiu CW (2019) Quantum plasmonics get applied. Prog Quantum Electron 65:1–20. https://doi.org/10.1016/j.pquantelec.2019.04.002

    Article  Google Scholar 

  9. Zhang L, Dai H, Wang X, Yao L, Ma Z, Han JB (2017) Nonlinear optical properties of Au–Ag core–shell nanorods for all-optical switching. J Phys D: Appl Phys 50:355302. https://doi.org/10.1088/1361-6463/aa7c51

    Article  CAS  Google Scholar 

  10. Li J, Cushing SK, Meng F, Senty TR, Bristow AD, Wu N (2015) Plasmon-induced resonance energy transfer for solar energy conversion. Nat Photonics 9:601–607. https://doi.org/10.1038/nphoton.2015.142

    Article  CAS  Google Scholar 

  11. Sheldon MT, van de Groep J, Brown AM, Polman A, Atwater HA (2014) Plasmoelectric potentials in metal nanostructures. Science 346:828–831. https://doi.org/10.1126/science.1258405

    Article  CAS  Google Scholar 

  12. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  13. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677. https://doi.org/10.1021/jp026731y

    Article  CAS  Google Scholar 

  14. Sheikholeslami S, Jun YW, Jain PK, Alivisatos AP (2010) Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer. Nano Lett 10:2655–2660. https://doi.org/10.1021/nl101380f

    Article  CAS  Google Scholar 

  15. Shao L, Ruan Q, Jiang R, Wang J (2014) Macroscale colloidal noble metal nanocrystal arrays and their refractive index-based sensing characteristics. Small 10:802–811. https://doi.org/10.1002/smll.201301812

    Article  CAS  Google Scholar 

  16. Lee J, Tymchenko M, Argyropoulos C, Chen PY, Lu F, Demmerle F, Boehm G, Amann MC, Alu A, Belkin MA (2014) Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions. Nature 511:65–69. https://doi.org/10.1038/nature13455

    Article  CAS  Google Scholar 

  17. Shao L, Woo KC, Chen H, Jin Z, Wang J, Lin HQ (2010) Angle- and energy-resolved plasmon coupling in gold nanorod dimers. ACS Nano 4:3053–3062. https://doi.org/10.1021/nn100180d

    Article  CAS  Google Scholar 

  18. deWaele R, Koenderink AF, Polman A (2007) Tunable nanoscale localization of energy on plasmon particle arrays. Nano Lett 7:2004–2008. https://doi.org/10.1021/nl070807q

    Article  CAS  Google Scholar 

  19. Zuloaga J, Prodan E, Nordlander P (2009) Quantum Description of the Plasmon Resonances of a Nanoparticle Dimer. Nano Lett 9:887–891. https://doi.org/10.1021/nl803811g

    Article  CAS  Google Scholar 

  20. Slaughter LS, Wu Y, Willingham BA, Nordlander P, Link S (2010) Effects of symmetry breaking and conductive contact on the plasmon coupling in gold nanorod dimers. ACS Nano 4:4657–4666. https://doi.org/10.1021/nn1011144

    Article  CAS  Google Scholar 

  21. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419–422. https://doi.org/10.1126/science.1089171

    Article  CAS  Google Scholar 

  22. Yoon JH, Selbach F, Schumacher L, Jose J, Schlücker S (2019) Surface plasmon coupling in dimers of gold nanoparticles: experiment and theory for ideal (spherical) and nonideal (faceted) building blocks. ACS Photonics 6:642–648. https://doi.org/10.1021/acsphotonics.8b01424

    Article  CAS  Google Scholar 

  23. Kumar J, Wei X, Barrow S, Funston AM, Thomas KG, Mulvaney P (2013) Surface plasmon coupling in end-to-end linked gold nanorod dimers and trimers. Phys Chem Chem Phys 15:4258–4264. https://doi.org/10.1039/C3CP44657C

    Article  CAS  Google Scholar 

  24. Tie L, Focsan M, Bosson J, Tira C, Campu A, Vulpoi A, Astilean S (2019) Controlling the end-to-end assembly of gold nanorods to enhance the plasmonic response in near infrared. Mater Res Express 6:095038. https://doi.org/10.1088/2053-1591/ab2eb0

    Article  CAS  Google Scholar 

  25. Yue W, Yang Y, Wang Z, Chen L, Wang X (2012) Surface-enhanced Raman scattering on gold nanorod pairs with interconnection bars of different widths. Sens Actuators, B Chem 171:734–738. https://doi.org/10.1016/j.snb.2012.05.064

    Article  CAS  Google Scholar 

  26. Han G, Weber D, Neubrech F, Yamada I, Mitome M, Bando Y, Pucci A, Nagao T (2011) Infrared spectroscopic and electron microscopic characterization of gold nanogap structure fabricated by focused ion beam. Nanotechnology 22:275202. https://doi.org/10.1088/0957-4484/22/27/275202

    Article  CAS  Google Scholar 

  27. Li W, Camargo PHC, Lu X, Xia Y (2009) Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced raman scattering. Nano Lett 9:485–490. https://doi.org/10.1021/nl803621x

    Article  CAS  Google Scholar 

  28. Kim S, Jin J, Kim YJ, Park IY, Kim Y, Kim SW (2008) High-harmonic generation by resonant plasmon field enhancement. Nature 453:757–760. https://doi.org/10.1038/nature07012

    Article  CAS  Google Scholar 

  29. Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Mullen K, Moerner WE (2009) Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat Photonics 3:654–657. https://doi.org/10.1038/nphoton.2009.187

    Article  CAS  Google Scholar 

  30. Ueno K, Juodkazis S, Mizeikis V, Sasaki K, Misawa H (2008) Clusters of closely spaced gold nanoparticles as a sourceof two-photon photoluminescence at visible wavelengths. Adv Mater 20:26–30. https://doi.org/10.1002/adma.200602680

    Article  CAS  Google Scholar 

  31. Grigorenko AN, Roberts NW, Dickinson MR, Zhang Y (2008) Nanometric optical tweezers based on nanostructured substrates. Nat Photonics 2:365–370. https://doi.org/10.1038/nphoton.2008.78

    Article  CAS  Google Scholar 

  32. Muhlschlegel P, Eisler HJ, Martin OJF, Hecht B, Pohl DW (2005) Resonant optical antennas. Science 308:1607–1609. https://doi.org/10.1126/science.1111886

    Article  CAS  Google Scholar 

  33. Schnell M, Garcia-Etxarri A, Huber AJ, Crozier K, Aizpurua J, Hillenbrand R (2009) Controlling the near-field oscillations of loaded plasmonic nanoantennas. Nat Photonics 3:287–291. https://doi.org/10.1038/nphoton.2009.46

    Article  CAS  Google Scholar 

  34. Jain PK, Eustis S, El-Sayed MA (2006) Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J Phys Chem B 110:18243–18253. https://doi.org/10.1021/jp063879z

    Article  CAS  Google Scholar 

  35. Lisunova M, Norman J, Blake P, Forcherio GT, DeJarnette DF, Roper DK (2013) Modulation of plasmonic Fano resonance by the shape of the nanoparticles in ordered arrays. J Phys D: Appl Phys 46:485103. https://doi.org/10.1088/0022-3727/46/48/485103

    Article  CAS  Google Scholar 

  36. Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P, Halas NJ (2010) Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett 10:3184–3189. https://doi.org/10.1021/nl102108u

    Article  CAS  Google Scholar 

  37. Lukyanchuk BS, Tribelsky MI, Wang Z, Zhou Y, Hong M, Shi L, Chong T (2007) Extraordinary scattering diagram for nanoparticles near plasmon resonance frequencies. Appl Phys A 89:259–264. https://doi.org/10.1007/s00339-007-4099-1

    Article  CAS  Google Scholar 

  38. Nikolaenko AE, De Angelis F, Boden SA, Papasimakis N, Ashburn P, Di Fabrizio E, Zheludev NI (2010) Carbon nanotubes in a photonic metamaterial. Phys Rev Lett 104:153902. https://doi.org/10.1103/PhysRevLett.104.153902

    Article  CAS  Google Scholar 

  39. Ye J, Wen F, Sobhani H, Lassiter JB, Van Dorpe P, Nordlander P, Halas NJ (2012) Plasmonic nanoclusters: near field properties of the fano resonance interrogated with SERS. Nano Lett 12:1660–1667. https://doi.org/10.1021/nl3000453

    Article  CAS  Google Scholar 

  40. Shcherbakov MR, Vabishchevich PP, Komarova VV, Dolgova TV, Panov VI, Moshchalkov VV, Fedyanin AA (2012) Ultrafast polarization shaping with fano plasmonic crystals. Phys Rev Lett 108:253903. https://doi.org/10.1103/PhysRevLett.108.253903

    Article  CAS  Google Scholar 

  41. Zou S, Schatz GC (2005) Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields. Chem Phys Lett 403:62–67. https://doi.org/10.1016/j.cplett.2004.12.107

    Article  CAS  Google Scholar 

  42. Samson ZL, Macdonald KF, Angelis FD, Cholipour B, Knight K, Huang CC, Fabrizio ED, Hewak DW, Zheludev NI (2010) Metamaterial electro-optic switch of nanoscale thickness. Appl Phys Lett 96:143105. https://doi.org/10.1063/1.3355544

    Article  CAS  Google Scholar 

  43. Lumerical Solutions, Inc. (trial version), https://www.docs.lumerical.com/en/fdtd/reference_guide.html. Accessed 6 Sept 2018

  44. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379. https://doi.org/10.1103/PhysRevB.6.4370

    Article  CAS  Google Scholar 

  45. Tabor C, Haute DV, El-Sayed MA (2009) Effect of orientation on plasmonic coupling between gold nanorods. ACS Nano 3:3670–3678. https://doi.org/10.1021/nn900779f

    Article  CAS  Google Scholar 

  46. Wu J, Lu X, Zhu Q, Zhao J, Shen Q, Zhan L, Ni W (2014) Angle-resolved plasmonic properties of single gold nanorod dimers. Nanomicro Lett 6:372–380. https://doi.org/10.1007/s40820-014-0011-7

    Article  CAS  Google Scholar 

  47. Biswas S, Nepal D, Park K, Vaia RA (2012) Orientation sensing with color using plasmonic gold nanorods and assemblies. J Phys Chem Lett 3:2568–2574. https://doi.org/10.1021/jz3009908

    Article  CAS  Google Scholar 

  48. Ni Y, Kan C, Xu J, Liu Y, Xu H, Wang C (2017) Dependence of plasmon coupling on curved interfaces. Appl Opt 56:8240–8245. https://doi.org/10.1364/AO.56.008240

    Article  CAS  Google Scholar 

  49. Funston AM, Novo C, Davis TJ, Mulvaney P (2009) Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett 9:1651–1658. https://doi.org/10.1021/nl900034v

    Article  CAS  Google Scholar 

  50. Bakhti S, Tishchenko AV, Zambrana-Puyalto X, Bonod N, Dhuey SD, Schuck PJ, Cabrini S, Alayoglu S, Destouches N (2016) Fano-like resonance emerging from magnetic and electric plasmon mode coupling in small arrays of gold particles. Sci Rep 6:32061. https://doi.org/10.1038/srep32061

    Article  CAS  Google Scholar 

Download references

Funding

The author, A. K. Sahu, receives financial support from CSIR, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Simulation methodology, data collection and analysis were performed by [Aditya K. Sahu]. The first draft of the manuscript was written by [Aditya K. Sahu] and both authors commented on previous versions of the manuscript. Both authors read and approved the final manuscript.

Conceptualization: [Aditya K. Sahu]; Methodology: [Aditya K. Sahu]; Formal analysis and investigation: [Aditya K. Sahu]; Writing—original draft preparation: [Aditya K. Sahu]; Writing-review and editing: [Satyabrata Raj], [Aditya K. Sahu]; Funding acquisition: [Satyabrata Raj]; Resources: [Satyabrata Raj]; Supervision: [Satyabrata Raj].

Corresponding author

Correspondence to Aditya K. Sahu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, A.K., Raj, S. Effect of plasmonic coupling in different assembly of gold nanorods studied by FDTD. Gold Bull 55, 19–29 (2022). https://doi.org/10.1007/s13404-022-00307-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-022-00307-x

Keywords

Navigation