Skip to main content
Log in

Byzantine gathering in polynomial time

  • Published:
Distributed Computing Aims and scope Submit manuscript

Abstract

Gathering is a key task in distributed and mobile systems, which becomes significantly harder if some agents are subject to Byzantine faults, known as being the worst ones. We propose here to study the task of Byzantine gathering in an arbitrary graph: despite the presence of Byzantine agents, the goal is to ensure that all the other (good) agents, executing the same algorithm, eventually meet at the same node and stop. Initially, each agent gets as input a different label and some global knowledge that is common to all agents. The agents move in synchronous rounds and communicate with each other only when located at the same node. There are f Byzantine agents. These agents act in an unpredictable way, e.g., they may convey arbitrary informations or forge any label. In the literature, the gathering algorithms working in such a context all have an exponential time complexity in the number n of nodes and the labels of the good agents. In this paper, we design a deterministic algorithm to solve Byzantine gathering in time polynomial in n and the logarithm \(\ell \) of the smallest label of a good agent, provided the agents are a strong team i.e., a team where the number of good agents is at least some quadratic polynomial in f. Our algorithm requires global knowledge that can be coded in \(O(\log \log \log n)\) bits: we prove this size is of optimal order of magnitude to obtain a polynomial time complexity in n and \(\ell \) with strong teams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Notes

  1. As the reader will notice, our ultimate goal is to get a running time that is polynomial in N and \(|l_{min}|\), and thus polynomial in n and \(|l_{min}|\) as N is a polynomial upper bound on n. If \({\mathcal {G}}{\mathcal {K}}\) was equal to \(\lceil \log \log \log n\rceil \), then we could only “deduce” a quasi-polynomial upper bound on n (in particular, we should then replace \(2^{(2^{{\mathcal {G}}{\mathcal {K}}})}\) with \(2^{(2^{(2^{{\mathcal {G}}{\mathcal {K}}})})}\) at line 2 of Algorithm 1 and at line 1 of Algorithm 2). As a result, we would get a worse running time that would be sub-exponential in n and \(|l_{min}|\), but that would already be an improvement compared to the exponential complexity of the algorithms from [7, 18].

References

  1. Abiteboul, S., Kaplan, H., Milo, T.: Compact labeling schemes for ancestor queries. In: Proceedings of the Twelfth Annual Symposium on Discrete Algorithms, January 7–9, 2001, Washington, DC, USA, pp. 547–556 (2001)

  2. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36(1), 56–82 (2006)

    Article  MathSciNet  Google Scholar 

  3. Alpern, S.: Rendezvous search: a personal perspective. Oper. Res. 50(5), 772–795 (2002)

    Article  MathSciNet  Google Scholar 

  4. Alpern, S.: The Theory of Search Games and Rendezvous. International Series in Operations Research and Management Science. Kluwer, Amsterdam (2003)

    Google Scholar 

  5. Bampas, E., Czyzowicz, J., Gasieniec, L., Ilcinkas, D., Labourel, A.: Almost optimal asynchronous rendezvous in infinite multidimensional grids. In: Proceedings of Distributed Computing, 24th International Symposium, DISC 2010, Cambridge, MA, USA, September 13–15, 2010, pp. 297–311 (2010)

  6. Barborak, M., Malek, M.: The consensus problem in fault-tolerant computing. ACM Comput. Surv. 25(2), 171–220 (1993)

    Article  Google Scholar 

  7. Bouchard, S., Dieudonné, Y., Ducourthial, B.: Byzantine gathering in networks. Distrib. Comput. 29(6), 435–457 (2016)

    Article  MathSciNet  Google Scholar 

  8. Bouchard, S., Dieudonné, Y., Lamani, A.: Byzantine gathering in polynomial time. In: Chatzigiannakis, I., Kaklamanis, C., Marx, D., Sannella, D. (eds.) 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018, July 9–13, 2018, Prague, Czech Republic, LIPIcs, vol. 107, pp. 147:1–147:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)

  9. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)

    Article  MathSciNet  Google Scholar 

  10. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-guided graph exploration by a finite automaton. ACM Trans. Algorithms 4(4), 42:1-42:18 (2008)

    Article  MathSciNet  Google Scholar 

  11. Collins, A., Czyzowicz, J., Gasieniec, L., Labourel, A.: Tell me where I am so I can meet you sooner. In: Proceedings of Automata, Languages and Programming, 37th International Colloquium, ICALP 2010, Bordeaux, France, July 6–10, 2010, Part II, pp. 502–514 (2010)

  12. Czyzowicz, J., Georgiou, K., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.M.: Search on a line by byzantine robots. In: 27th International Symposium on Algorithms and Computation, ISAAC 2016, December 12–14, 2016, Sydney, Australia, pp. 27:1–27:12 (2016)

  13. Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: log-space rendezvous in arbitrary graphs. Distrib. Comput. 25(2), 165–178 (2012)

    Article  Google Scholar 

  14. Czyzowicz, J., Pelc, A., Labourel, A.: How to meet asynchronously (almost) everywhere. ACM Trans. Algorithms 8(4), 37 (2012)

    Article  MathSciNet  Google Scholar 

  15. Das, S., Dereniowski, D., Kosowski, A., Uznanski, P.: Rendezvous of distance-aware mobile agents in unknown graphs. In: Proceedings of Structural Information and Communication Complexity—21st International Colloquium, SIROCCO 2014, Takayama, Japan, July 23–25, 2014, pp. 295–310 (2014)

  16. Défago, X., Gradinariu, M., Messika, S., Parvédy, P.R.: Fault-tolerant and self-stabilizing mobile robots gathering. In: Proceedings of Distributed Computing, 20th International Symposium, DISC 2006, Stockholm, Sweden, September 18–20, 2006, pp. 46–60 (2006)

  17. Dessmark, A., Fraigniaud, P., Kowalski, D.R., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46(1), 69–96 (2006)

    Article  MathSciNet  Google Scholar 

  18. Dieudonné, Y., Pelc, A., Peleg, D.: Gathering despite mischief. ACM Trans. Algorithms 11(1), 1 (2014)

    Article  MathSciNet  Google Scholar 

  19. Dieudonné, Y., Pelc, A., Villain, V.: How to meet asynchronously at polynomial cost. SIAM J. Comput. 44(3), 844–867 (2015)

    Article  MathSciNet  Google Scholar 

  20. Fraigniaud, P., Gavoille, C., Ilcinkas, D., Pelc, A.: Distributed computing with advice: information sensitivity of graph coloring. Distrib. Comput. 21(6), 395–403 (2009)

    Article  Google Scholar 

  21. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Tree exploration with advice. Inf. Comput. 206(11), 1276–1287 (2008)

    Article  MathSciNet  Google Scholar 

  22. Fraigniaud, P., Pelc, A.: Deterministic rendezvous in trees with little memory. In: Proceedings of Distributed Computing, 22nd International Symposium, DISC 2008, Arcachon, France, September 22–24, 2008, pp. 242–256 (2008)

  23. Fraigniaud, P., Pelc, A.: Delays induce an exponential memory gap for rendezvous in trees. ACM Trans. Algorithms 9(2), 17:1-17:24 (2013)

    Article  MathSciNet  Google Scholar 

  24. Guilbault, S., Pelc, A.: Gathering asynchronous oblivious agents with local vision in regular bipartite graphs. Theor. Comput. Sci. 509, 86–96 (2013)

    Article  MathSciNet  Google Scholar 

  25. Hirose, J., Nakamura, J., Ooshita, F., Inoue, M.: Gathering with a strong team in weakly byzantine environments. In: ICDCN’21: International Conference on Distributed Computing and Networking, Virtual Event, Nara, Japan, January 5–8, 2021. ACM, pp. 26–35 (2021)

  26. Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Défago, X., Wada, K., Yamashita, M.: The gathering problem for two oblivious robots with unreliable compasses. SIAM J. Comput. 41(1), 26–46 (2012)

    Article  MathSciNet  Google Scholar 

  27. Katz, M., Katz, N.A., Korman, A., Peleg, D.: Labeling schemes for flow and connectivity. SIAM J. Comput. 34(1), 23–40 (2004)

    Article  MathSciNet  Google Scholar 

  28. Kowalski, D.R., Malinowski, A.: How to meet in anonymous network. Theor. Comput. Sci. 399(1–2), 141–156 (2008)

    Article  MathSciNet  Google Scholar 

  29. Kranakis, E., Krizanc, D., Markou, E., Pagourtzis, A., Ramírez, F.: Different speeds suffice for rendezvous of two agents on arbitrary graphs. In: Proceedings of SOFSEM 2017: Theory and Practice of Computer Science—43rd International Conference on Current Trends in Theory and Practice of Computer Science, Limerick, Ireland, January 16–20, 2017, pp. 79–90 (2017)

  30. Kranakis, E., Krizanc, D., Rajsbaum, S.: Mobile agent rendezvous: A survey. In: Proceedings of Structural Information and Communication Complexity, 13th International Colloquium, SIROCCO 2006, Chester, UK, July 2-5, 2006, pp. 1–9 (2006)

  31. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, Burlington (1996)

    MATH  Google Scholar 

  32. Marco, G.D., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asynchronous deterministic rendezvous in graphs. Theor. Comput. Sci. 355(3), 315–326 (2006)

    Article  MathSciNet  Google Scholar 

  33. Miller, A., Pelc, A.: Fast rendezvous with advice. Theor. Comput. Sci. 608, 190–198 (2015)

    Article  MathSciNet  Google Scholar 

  34. Miller, A., Pelc, A.: Time versus cost tradeoffs for deterministic rendezvous in networks. Distrib. Comput. 29(1), 51–64 (2016)

    Article  MathSciNet  Google Scholar 

  35. Miller, A., Saha, U.: Fast byzantine gathering with visibility in graphs. In: Pinotti, C.M., Navarra, A., Bagchi, A. (eds.) Algorithms for Sensor Systems—16th International Symposium on Algorithms and Experiments for Wireless Sensor Networks, ALGOSENSORS 2020, Pisa, Italy, September 9-10, 2020, Revised Selected Papers, Lecture Notes in Computer Science, vol. 12503. Springer, pp. 140–153 (2020)

  36. Nisse, N., Soguet, D.: Graph searching with advice. Theor. Comput. Sci. 410(14), 1307–1318 (2009)

    Article  MathSciNet  Google Scholar 

  37. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of faults. J. ACM 27(2), 228–234 (1980)

    Article  MathSciNet  Google Scholar 

  38. Pelc, A.: Deterministic gathering with crash faults. Networks 72(2), 182–199 (2018)

    Article  MathSciNet  Google Scholar 

  39. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 17:1-17:24 (2008)

    Article  MathSciNet  Google Scholar 

  40. Schelling, T.: The Strategy of Conflict. Oxford University Press, Oxford (1960)

    MATH  Google Scholar 

  41. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts, and strongly universal exploration sequences. ACM Trans. Algorithms 10(3), 12 (2014)

    Article  MathSciNet  Google Scholar 

  42. Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52(1), 1–24 (2005)

    Article  MathSciNet  Google Scholar 

  43. Tsuchida, M., Ooshita, F., Inoue, M.: Byzantine-tolerant gathering of mobile agents in arbitrary networks with authenticated whiteboards. IEICE Trans. 101–D(3), 602–610 (2018)

    Article  Google Scholar 

Download references

Funding

This work was performed within Project ESTATE (Ref. ANR-16-CE25-0009-03). It is supported by French state funds managed by the ANR (Agence Nationale de la Recherche).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoann Dieudonné.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version of this paper appeared in the Proceedings of the 45th International Colloquium on Automata, Languages and Programming (ICALP 2018)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouchard, S., Dieudonné, Y. & Lamani, A. Byzantine gathering in polynomial time. Distrib. Comput. 35, 235–263 (2022). https://doi.org/10.1007/s00446-022-00419-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00446-022-00419-9

Keywords

Navigation