Skip to main content
Log in

Effect of Surface Modification of Nanoparticles on the Mechanical Properties of Highly Crosslinked Epoxy Nanocomposites: Mesoscopic Simulation

  • PHYSICAL CHEMISTRY
  • Published:
Doklady Physical Chemistry Aims and scope Submit manuscript

Abstract

A mesoscopic model of a nanocomposite based on crosslinked polymer networks with embedded clay nanoparticles was developed. The model makes it possible to predict the main trends in changes in the mechanical properties of systems, taking into account the degree of crosslinking of nanoparticles with a polymer matrix. The performed simulations showed that modified nanoparticles can significantly improve the Young’s modulus of the nanocomposite compared to the unfilled polymer. It was also shown that the average value of the number of load-bearing chains determines the mechanical response of the coarse-grained model of the polymer system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Rudnik, E., Compostable Polymer Materials, Oxford: Elsevier, 2008.

    Google Scholar 

  2. Ray, S.S., Macromol. Chem. Phys., 2014, vol. 215, no. 12, pp. 1162–1179. https://doi.org/10.1002/macp.201400069

    Article  CAS  Google Scholar 

  3. Bhattacharya, M., Materials, 2016, vol. 9, no. 4, pp. 262–297. https://doi.org/10.3390/ma9040262

    Article  CAS  PubMed Central  Google Scholar 

  4. Jeyakumar, R., Sampath, P.S., Ramamoorthi, R., and Ramakrishnan, T., Int. J. Adv. Manuf. Technol., 2017, vol. 93, pp. 527–535. https://doi.org/10.1007/s00170-017-0565-x

    Article  Google Scholar 

  5. Shetty, N., Shahabaz, S.M., Sharma, S.S., and Shetty, S.D., Compos. Struct., 2017, vol. 176, pp. 790–802. https://doi.org/10.1016/j.compstruct.2017.06.012

    Article  Google Scholar 

  6. Gavrilov, A.A., Chertovich, A.V., Khalatur, P.G., and Khokhlov, A.R., Soft Matter, 2013, vol. 9, no. 15, pp. 4067–4072. https://doi.org/10.1039/c3sm27281h

    Article  CAS  Google Scholar 

  7. Komarov, P.V., Baburkin, P.O., Ivanov, V.A., Chen, S.-A., and Khokhlov, A.R., Dokl. Phys. Chem., 2019, vol. 485, no. 1, pp. 39–42. https://doi.org/10.1134/s0012501619030011

    Article  CAS  Google Scholar 

  8. Komarov, P.V., Khalatur, P.G., and Khokhlov, A.R., Polym. Adv. Technol., 2021, vol. 32, no. 10, pp. 3922–3933. https://doi.org/10.1002/pat.5354

    Article  CAS  Google Scholar 

  9. Groot, R.D. and Warren, P.B., J. Chem. Phys., 1997, vol. 107, no. 11, pp. 4423–4435. https://doi.org/10.1063/1.474784

    Article  CAS  Google Scholar 

  10. Capelot, M., Montarnal, D., Tournilhac, F., and Leibler, L., J. Am. Chem. Soc., 2012, vol. 134, no. 18, pp. 7664–7667. https://doi.org/10.1021/ja302894k

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, B., Yuan, C., Zhang, W., Dunn, M.L., Qi, H.J., Liu, Z., Yu, K., and Ge, Q., RSC Adv., 2019, no. 9, pp. 5431–5437. https://doi.org/10.1039/c9ra00015a

  12. Gavrilov, A.A., Komarov, P.V., and Khalatur, P.G., Macromolecules, 2015, vol. 48, no. 1, pp. 206–212.

    Article  CAS  Google Scholar 

  13. DPD_chem package for modeling polymers and melts using the reaction version of dissipative particle dynamics. https://www.researchgate.net/project/DPDChem-Software. Accessed May 20, 2021.

  14. Bharadwaj, R.K., Mehrabi, A.R., Hamilton, C., Trujillo, C., Murga, M., Fan, R., Chavira, A., and Thompson, A.K., Polymer, 2002, vol. 43, no. 13, pp. 3699–3705. https://doi.org/10.1016/S0032-3861(02)00187-8

    Article  CAS  Google Scholar 

  15. Zaman, I., Nor, F.M., Manshoor, B., Khalid, A., and Araby, S., Proc. Manuf., 2015, vol. 2, p. 23. https://doi.org/10.1016/j.promfg.2015.07.005

    Article  Google Scholar 

  16. Zabihi, O., Ahmadi, M., and Naebe, M., Mater. Des., 2017, vol. 119, pp. 277–289. https://doi.org/10.1016/j.matdes.2017.01.079

    Article  CAS  Google Scholar 

  17. Sadovnichy, V., Tikhonravov, A., Voevodin, V., and Opanasenko, V., in Contemporary High Performance Computing: From Petascale toward Exascale, London: Chapman and Hall/CRC, 2013, pp. 283–307.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank P.G. Khalatur for topological analysis software and DPD_NPT_chem and also A. A. Gavrilov for the dpdBig software.

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation (agreement no. 075-15-2020-794) using facilities of the Supercomputer Complex, Moscow State University [17].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Guseva.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by V. Glyanchenko

This article was submitted to the virtual issue “Young Scientists of the RAS.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malyshev, M.D., Guseva, D.V. & Komarov, P.V. Effect of Surface Modification of Nanoparticles on the Mechanical Properties of Highly Crosslinked Epoxy Nanocomposites: Mesoscopic Simulation. Dokl Phys Chem 500, 92–96 (2021). https://doi.org/10.1134/S0012501621090025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012501621090025

Keywords:

Navigation