Skip to main content
Log in

A Real-Valued Measure on non-Archimedean Field Extensions of \(\mathbb{R}\)

  • Research Articles
  • Published:
p-Adic Numbers, Ultrametric Analysis and Applications Aims and scope Submit manuscript

Abstract

We introduce a real-valued measure \( m _L \) on non-Archimedean ordered fields \(( \mathbb{F} ,<)\) that extend the field of real numbers \(({\mathbb R},<)\). The definition of \( m _L \) is inspired by the Loeb measures of hyperreal fields in the framework of Robinson’s analysis with infinitesimals. The real-valued measure \( m _L \) turns out to be general enough to obtain a canonical measurable representative in \( \mathbb{F} \) for every Lebesgue measurable subset of \({\mathbb R}\), moreover the measure of the two sets is equal. In addition, \(m_L\) it is more expressive than a class of non-Archimedean uniform measures. We focus on the properties of the real-valued measure in the case where \( \mathbb{F} = \mathcal{R} \), the Levi-Civita field. In particular, we compare \( m _L \) with the uniform non-Archimedean measure over \( \mathcal{R} \) developed by Shamseddine and Berz, and we prove that the first is infinitesimally close to the second, whenever the latter is defined. We also define a real-valued integral for functions on the Levi-Civita field, and we prove that every real continuous function has an integrable representative in \( \mathcal{R} \). Recall that this result is false for the current non-Archimedean integration over \( \mathcal{R} \). The paper concludes with a discussion on the representation of the Dirac distribution by pointwise functions on non-Archimedean domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Benci, “Ultrafunctions and generalized solutions,” Advan. Nonlin. Stud. 13, 461–486 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Benci, E. Bottazzi and M. Di Nasso, “Elementary numerosity and measures,” J. Log. Anal. 6, Paper 3, 14 pp. (2014).

    MathSciNet  MATH  Google Scholar 

  3. V. Benci, E. Bottazzi and M. Di Nasso, “Some applications of numerosities in measure theory,” Rend. Lincei-Matem. Appl. 26 (1), 37–48 (2015).

    MathSciNet  MATH  Google Scholar 

  4. V. Benci, L. Horsten and S. Wenmackers, “Infinitesimal probabilities,” Brit. J. Phil. Sci. 69, 509–552 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Berarducci and M. Otero, “An additive measure in o-minimal expansions of fields,” Quart. J. Math. 55 (4), 411–419 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Berz, Analysis on a Nonarchimedean Extension of the Real Numbers, Lecture Notes (1992).

    MATH  Google Scholar 

  7. M. Berz, “Calculus and numerics on Levi-Civita fields” in Computational Differentiation: Techniques, Applications, and Tools, pp. 19–35 (SIAM, Philadelphia, 1996).

    MathSciNet  MATH  Google Scholar 

  8. M. Berz and K. Shamseddine, “Analysis on the Levi-Civita field, a brief overview,” Contemp. Math. 508, 215–237 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Berz and K. Shamseddine, “Analytical properties of power series on Levi-Civita fields,” Ann. Math. Blaise Pascal 12 (2), 309–329 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Bottazzi, “A transfer principle for the continuation of real functions to the Levi-Civita field,” p-Adic Num. Ultrametr. Anal. Appl. 10 (3), 179–191 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Bottazzi, “Grid functions of nonstandard analysis in the theory of distributions and in partial differential equations,” Adv. Math. 345, 429–482 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Bottazzi, “A grid function formulation of a class of ill-posed parabolic equations,” J. Diff. Equat. 271, 39–75 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  13. E Bottazzi, “An incimpatibility result on non-Archimedean integration,” p-Adic Num. Ultrametr. Anal. Appl. 13 (4), 316–319 (2021).

    Article  MATH  Google Scholar 

  14. E. Bottazzi, “Spaces of measurable functions on the Levi-Civita field,” Indag. Math. 31 (4), 650–694 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  15. E. Bottazzi, \(\Omega\)-Theory: Mathematics with Infinite and Infinitesimal Numbers, Master thesis (University of Pavia, Italy, 2012).

  16. E. Bottazzi and M. Katz, “Internality, transfer and infinitesimal modeling of infinite processes,” Philos. Math. 29 (2), 256–277 (2021).

    Google Scholar 

  17. J. F. Colombeau, “A general multiplication of distributions,” Compt. Rend. Acad. Sci. Paris 296, 357–360 (1983), and subsequent notes presented by L. Schwartz.

    MathSciNet  MATH  Google Scholar 

  18. O. Costin, P. Ehrlich and H. Friedman, “Integration on the surreals: a conjecture of Conway, Kruskal and Norton,” preprint (2015). See https://arxiv.org/abs/1505.02478.

  19. N. J. Cutland, “Infinitesimal methods in control theory: deterministic and stochastic,” Acta Appl. Math. 5, 105–135 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  20. N. J. Cutland, “Loeb measure theory,” in Loeb Measures in Practice: Recent Advances, pp. 1–28 (Springer, Berlin, Heidelberg, 2000).

    Google Scholar 

  21. N. J. Cutland, “Nonstandard measure theory and its applications,” Bull. London Math. Soc. 15, 529–589 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Eskew, “Integration via ultrafilters, preprint https://arxiv.org/abs/2004.09103 (2020).

  23. D. Flynnn and K. Shamseddine, “On integrable delta functions on the Levi-Civita field,” \(p\)-Adic Num. Ultrametr. Anal. Appl. 10 (1), 32–56 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Fornasiero, Integration on Surreal Numbers, PhD thesis (2004).

    Google Scholar 

  25. A. Fornasiero and E. Vasquez Rifo, “Hausdorff measure on o-minimal structures,” J. Symb. Log. 77 (2), 631–648 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Goldblatt, Lectures on the Hyperreals: An Introduction to Nonstandard Analysis, Graduate Texts in Mathematics 188 (Springer, New York, 1998).

    MATH  Google Scholar 

  27. C. W. Henson, “On the nonstandard representation of measures,” Trans. Amer. Math. Soc. 172, 437–446 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  28. T. Kaiser, “Lebesgue measure and integration theory on non-archimedean real closed fields with archimedean value group,” Proc. London Math. Soc. 116 (2), 209–247 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  29. T. Levi-Civita, “Sugli infiniti ed infinitesimi attuali quali elementi analitici,” Atti Ist. Veneto di Sc., Lett. ed Art., 7a (4), p. 1765 (1892).

    MATH  Google Scholar 

  30. T. Levi-Civita, “Sui numeri transfiniti,” Rend. Acc. Lincei, 5a (7), 91–113 (1898).

    MATH  Google Scholar 

  31. P. A. Loeb, “Conversion from nonstandard to standard measure spaces and applications in probability theory,” Trans. Amer. Math. Soc. 211, 113–22 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  32. H. M. Moreno, “Non-measurable sets in the Levi-Civita field,” in Advances in Ultrametric Analysis: 12th Int. Conf. on \(p\)-Adic Functional Analysis, July 2-6, 2012, University of Manitoba, Winnipeg, Manitoba, Canada. Contemp. Math. 596, 163–178 (Amer. Math. Soc., 2013).

    Article  MathSciNet  MATH  Google Scholar 

  33. S. Payne, “Topology of nonarchimedean analytic spaces and relations to complex algebraic geometry,” Bull. Amer. Math. Soc. 52, 223–247(2015).

    Article  MathSciNet  MATH  Google Scholar 

  34. C. C. Pugh, Real Mathematical Analysis (Springer Intern. Publishing, 2015).

    Book  MATH  Google Scholar 

  35. A. Robinson, “Non-standard analysis,” Nederl. Akad. Wetensch. Proc. Ser. A 64, Indag. Math. 23, 432–440 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Robinson, Non-Standard Analysis (North-Holland Publishing, Amsterdam, 1966).

    MATH  Google Scholar 

  37. K. Shamseddine, New Elements of Analysis on the Levi-Civita Field, PhD thesis (Michigan State University, East Lansing, Michigan, USA, 1999).

    Google Scholar 

  38. K. Shamseddine, “New results on integration on the Levi-Civita field,” Indag. Math. 24 (1), 199–211 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  39. K. Shamseddine and M. Berz, “Convergence on the Levi-Civita field and study of power series,” Proc. Sixth Int. Conference on Nonarchimedean Analysis, pp. 283–299 (Marcel Dekker, New York, NY, 2000).

    MATH  Google Scholar 

  40. K. Shamseddine and M. Berz, “Measure theory and integration on the Levi-Civita field,” Contemp. Math. 319, 369–388 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  41. K. Shamseddine and D. Flynn, “Measure theory and Lebesgue-like integration in two and three dimensions over the Levi-Civita field,” Contemp. Math. 665, 289–325 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  42. T. D. Todorov and H. Vernaeve, “Full algebra of generalized functions and non-standard asymptotic analysis,” J. Log. Anal. 1, 205 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  43. F. Wattenberg, “Nonstandard measure theory. Hausdorff measure,” Proc. Amer. Math. Soc. 65 (2), 326–331 (1977).

    MathSciNet  MATH  Google Scholar 

  44. J. Yeh, Real Analysis, Theory of Measure and Integration (World Scientific Publishing Co. Pte. Ltd., 2006).

    Book  MATH  Google Scholar 

Download references

Acknowledgments

Alessandro Berarducci and Mauro Di Nasso provided insightful comments to some ideas presented in Section 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Bottazzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bottazzi, E. A Real-Valued Measure on non-Archimedean Field Extensions of \(\mathbb{R}\). P-Adic Num Ultrametr Anal Appl 14, 14–43 (2022). https://doi.org/10.1134/S2070046622010022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070046622010022

Keywords

Navigation