Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 8, 2021

Radiative transfer in a Solar CPC Photoreactor using the First-Order Scattering Method

  • Patricio J. Valades-Pelayo and Manuel A. Ramirez-Cabrera ORCID logo EMAIL logo

Abstract

This manuscript analyzes the suitability of a recently proposed numerical method, the First-Order Scattering Method (FOS), to describe radiation transfer in a Solar Compound Parabolic Collector Photoreactor (CPCP). The study considers five different irradiance conditions ranging from fully diffuse to fully direct solar radiation, with 90 and 45° angled rays. Three photocatalysts at different loadings were considered: Evonik P25, Graphene Oxide, and Goethite, selected due to (1) their relevance in photocatalytic applications and (2) the availability of optical transport properties in the open literature. The study shows that the method is efficient and free of statistical noise, while its accuracy is not affected by the boundary condition’s complexity. The method’s accuracy is very high for photocatalysts with low to moderate albedos, such as Goethite and Graphene Oxide, displaying Normalized Absoluted Mean Error below 3%, i.e., comparable to the Monte Carlo (MC) Method’s statistical fluctuations.


Corresponding author: Manuel A. Ramirez-Cabrera, Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos, CP 62580, Mexico, E-mail:

Funding source: Fondo Sectorial CONACYT-SENER-Sustentabilidad Energética

Award Identifier / Grant number: 207450

Funding source: Centro Mexicano de Innovación en Energía Solar

Award Identifier / Grant number: 120

Acknowledgment

The authors acknowledge the financial support received from Fondo Sectorial CONACYT-SENER-Sustentabilidad Energética through Grant 207450, “Centro Mexicano de Innovación en Energía Solar (CeMIE-Sol)”, within strategic project No. 120, “Tecnología solar para obtención de productos con valor agregado mediante procesamiento hidrotermal”.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was supported by Fondo Sectorial CONACYT-SENER-Sustentabilidad Energética through Grant 207450 and Centro Mexicano de Innovación en Energía Solar (CeMIE-Sol)”, within strategic project No. 120.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Acosta-Herazo, R., B. Cañaveral-Velásquez, K. Pérez-Giraldo, M. A. Mueses, M. H. Pinzón-Cárdenas, and F. Machuca-Martínez. 2020a. “A MATLAB-Based Application for Modeling and Simulation of Solar Slurry Photocatalytic Reactors for Environmental Applications.” Water 12 (8): 2196, https://doi.org/10.3390/w12082196.Search in Google Scholar

Acosta-Herazo, R., G. Li Puma, M. A. Mueses, and F. Machuca-Martinez. 2019. “Impact of Photocatalyst Optical Properties on the Efficiency of Solar Photocatalytic Reactors Rationalized by the Concepts of Initial Rate of Photon Absorption (IRPA) Dimensionless Boundary Layer of Photon Absorption and Apparent Optical Thickness.” Chemical Engineering Journal 356: 839–49, https://doi.org/10.1016/j.cej.2018.09.085.Search in Google Scholar

Acosta-Herazo, R., J. Monterroza-Romero, M. Á. Mueses, F. Machuca-Martínez, and G. Li Puma. 2016. “Coupling the Six Flux Absorption-Scattering Model to the Henyey-Greenstein Scattering Phase Function: Evaluation and Optimization of Radiation Absorption in Solar Heterogeneous Photoreactors.” Chemical Engineering Journal 302: 86–96, https://doi.org/10.1016/j.cej.2016.04.127.Search in Google Scholar

Acosta-Herazo, R., P. J. Valadés-Pelayo, M.A. Mueses, M.H. Pinzón-Cárdenasa, C.A. Arancibia-Bulnes, and F. Machuca-Martinez. 2020b. “An optical and energy absorption analysis of the solar compound parabolic T collector photoreactor (CPCP): The impact of the radiation distribution on its optimization.” Chemical Engineering Journal 395: 125065, https://doi.org/10.1016/j.cej.2020.125065.Search in Google Scholar

Brucato, A., A. E. Cassano, F. Grisafi, G. Montante, L. Rizzuti, and G. Vella. 2006. “Estimating Radiant Fields in Flat Heterogeneous Photoreactors by the Six-Flux Model.” AIChE Journal 52: 3882–90, https://doi.org/10.1002/aic.10984.Search in Google Scholar

Brucato, A., and L. Rizzuti. 1997. “Simplified Modeling of Radiant Fields in Heterogeneous Photoreactors. 2. Limiting Two-Flux Model for the Case of Reflectance Greater Than Zero.” Industrial & Engineering Chemistry Research 36: 4748–55, https://doi.org/10.1021/ie960260i.Search in Google Scholar

Cassano, A., and O. Alfano. 2000. “Reaction Engineering of Suspended Solid Heterogeneous Photocatalytic Reactors.” Catalysis Today 58: 167–97, https://doi.org/10.1016/s0920-5861(00)00251-0.Search in Google Scholar

Celaya, C. A., C. Delesma, P. J. Valadés-Pelayo, O. A. Jaramillo-Quintero, C. O. Castillo-Araiza, L. Ramos, P. J. Sebastian, and J. Muñiz. 2020. “Exploring the Potential of Graphene Oxide as a Functional Material to Produce Hydrocarbons via Photocatalysis: Theory Meets Experiment.” Fuel 271: 117616, https://doi.org/10.1016/j.fuel.2020.117616.Search in Google Scholar

Chai, J. C., H. S. Lee, and S. V. Patankar. 1993. “Ray Effect and False Scattering in the Discrete Ordinates Method.” Numerical Heat Transfer, Part B Fundamentals 24: 373–89, https://doi.org/10.1080/10407799308955899.Search in Google Scholar

Coelho, P. J. 2014. “Advances in the Discrete Ordinates and Finite Volume Methods for the Solution of Radiative Heat Transfer Problems in Participating Media.” Journal of Quantitative Spectroscopy & Radiative Transfer 145: 121–46, https://doi.org/10.1016/j.jqsrt.2014.04.021.Search in Google Scholar

Escobedo Salas, S., B. Serrano Rosales, and H. De Lasa. 2013. “Quantum Yield with Platinum Modified TiO2 Photocatalyst for Hydrogen Production.” Applied Catalysis B: Environmental 140: 523–36, https://doi.org/10.1016/j.apcatb.2013.04.016.Search in Google Scholar

Garcia Hernandez, J. M., B. Serrano Rosales, and H. de Lasa. 2010. “The Photochemical Thermodynamic Efficiency Factor (PTEF) in Photocatalytic Reactors for Air Treatment.” Chemical Engineering Science 166: 891–901, https://doi.org/10.1016/j.cej.2010.06.034.Search in Google Scholar

Herrmann, J. 1999. “Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants.” Catalysis Today 53: 115–29, https://doi.org/10.1016/s0920-5861(99)00107-8.Search in Google Scholar

Joven-Quintero, S. A., S. F. Castilla-Acevedo, L. A. Betancourt-Buitrago, R. A.-Herazo, and 2020. “Photocatalytic Degradation of Cobalt Cyanocomplexes in a Novel LED Photoreactor Using TiO2 Supported on Borosilicate Sheets: A New Perspective for Mining Wastewater Treatment.” Materials Science in Semiconductor Processing 110: 104972.10.1016/j.mssp.2020.104972Search in Google Scholar

Lasa, H. D., B. S. Rosales, J. Moreira, and P. Valades-Pelayo. 2016. “Efficiency Factors in Photocatalytic Reactors: Quantum Yield and Photochemical Thermodynamic Efficiency Factor.” Chemical Engineering & Technology 39 (1): 51–65, https://doi.org/10.1002/ceat.201500305.Search in Google Scholar

Li Puma, G. 2005. “Dimensionless Analysis of Photocatalytic Reactors Using Suspended Solid Photocatalysts.” Chemical Engineering Research and Design 83: 820–6, https://doi.org/10.1205/cherd.04336.Search in Google Scholar

Li Puma, G., and A. Brucato. 2007. “Dimensionless Analysis of Slurry Photocatalytic Reactors Using Two-Flux and Six-Flux Radiation Absorption-Scattering Models.” Catalysis Today 1–2: 78–90, https://doi.org/10.1016/j.cattod.2007.01.027.Search in Google Scholar

Li Puma, G., and I. Grčić. 2013. “Photocatalytic Degradation of Water Contaminants in Multiple Photoreactors and Evaluation of Reaction Kinetic Constants Independent of Photon Absorption, Irradiance, Reactor Geometry, and Hydrodynamics.” Environmental Science & Technology 47 (23): 13702–11, https://doi.org/10.1021/es403472e.Search in Google Scholar PubMed

Li, Y., X. L. Xia, C. Sun, H. P. Tan, and J. Wang. 2017. “Pore-level Numerical Analysis of the Infrared Surface Temperature of Metallic Foam.” Journal of Quantitative Spectroscopy and Radiative Transfer 200: 59–69.10.1016/j.jqsrt.2017.06.004Search in Google Scholar

Moreira, J., B. Serrano, A. Ortiz, and H. De Lasa. 2011. “TiO2 Absorption and Scattering Coefficients Using Monte Carlo Method and Macroscopic Balances in a Photo-CREC Unit.” Chemical Engineering Science 66 (23): 235813–21, https://doi.org/10.1016/j.ces.2011.07.040.Search in Google Scholar

Moreira, J., B. Serrano-Rosales, P. J. Valades-Pelayo, and H. de Lasa. 2013. “Determination of Kinetic Parameter in a Unified Kinetic Model for the Photodegradation of Phenol by Using Nonlinear Regression and the Genetic Algorithm.” International Journal of Chemical Reactor Engineering 11 (2): 641–56, https://doi.org/10.1515/ijcre-2012-0003.Search in Google Scholar

Ortiz de la Plata, G. B., O. M. Alfano, and A. E. Cassano. 2008. “Optical Properties of Goethite Catalyst for Heterogeneous Photo-Fenton Reactions: Comparison with a Titanium Dioxide Catalyst.” Chemical Engineering Journal 137 (2): 396–410, https://doi.org/10.1016/j.cej.2007.05.008.Search in Google Scholar

Pareek, V., S. Chong, M. Tadé, and A. A. Adesina. 2008. “Light Intensity Distribution in Heterogeneous Photocatalytic Reactors.” Asia-Pacific Journal of Chemical Engineering 3: 171, https://doi.org/10.1002/apj.129.Search in Google Scholar

Ramírez-Cabrera, M. A., P. J. Valadés-Pelayo, C. A. Arancibia-Bulnes, and E. Ramos. 2017. “Validity of the Six-Flux Model for Photoreactors.” Chemical Engineering Journal 330: 272–80, https://doi.org/10.1016/j.cej.2017.07.120.Search in Google Scholar

Ramos-Huerta, L. A., L. Laureys, A. G. Llanos, P. J. Valadés, R. S. Ruiz, and C. O. Castillo. 2020b. “Assessing the Effect of Light Intensity and Light Wavelength Spectra on the Photoreduction of Formic Acid Using a Graphene Oxide Material.” International Journal of Chemical Reactor Engineering 18 (8). https://doi.org/10.1515/ijcre-2020-0008. In Press.Search in Google Scholar

Ramos-Huerta, L. A., P. J. Valadés-Pelayo, A. G. Llanos, R. S. Ruiz, J. J. Cabello, and C. O. Castillo-Araiza. 2020a. “Development of a New Methodology to Determine Suspended Photocatalyst Optical Properties.” Chemical Engineering Journal: 127458. https://doi.org/10.1016/j.cej.2020.127458.Search in Google Scholar

Ramírez-Cabrera, M. A., C. A. Arancibia-Bulnes, and P. J. Valades-Pelayo. 2020. “The First Order Scattering Approximation: A Closed-form Extension to Beer’s Law, Accurate for Weakly Scattering Media.” Journal of Quantitative Spectroscopy & Radiative Transfer: 107412.10.1016/j.jqsrt.2020.107412Search in Google Scholar

Ravishankar, M., S. Mazumder, and M. Sankar. 2010. “Application of the Modified Differential Approximation for Radiative Transfer to Arbitrary Geometry.” Journal of Quantitative Spectroscopy & Radiative Transfer 111: 2052–69, https://doi.org/10.1016/j.jqsrt.2010.05.020.Search in Google Scholar

Tan, H. P., H. C. Zhang, and B. Zhen. 2004. “Estimation of Ray Effect and False Scattering in Approximate Solution Method for Thermal Radiative Transfer Equation.” Numerical Heat Transfer, Part A: Applications 46 (8): 807–29, https://doi.org/10.1080/104077890504267.Search in Google Scholar

Valades-Pelayo, P. J., J. Moreira, B. Serrano, and H. de Lasa. 2014. “Boundary Conditions and Phase Functions in a Photo- CREC Water-II Reactor Radiation Field.” Chemical Engineering Science 107: 123–36, https://doi.org/10.1016/j.ces.2013.12.013.Search in Google Scholar

Valadés-Pelayo, P. J., C. A. Arancibia-Bulnes, I. Salgado-Tránsito, H. I. Villafán-Vidales, M. I. Peña-Cruz, and A. E. Jiménez-González. 2017. “Effect of Photocatalyst Film Geometry on Radiation Absorption in a Solar Reactor, a Multiscale Approach.” Chemical Engineering Science 161: 24–35, https://doi.org/10.1016/j.ces.2016.11.046.Search in Google Scholar

Yang, J., and M. F. Modest. 2007. “High-order PN Approximation for Radiative Transfer in Arbitrary Geometries.” Journal of Quantitative Spectroscopy & Radiative Transfer 104 (2): 217–27, https://doi.org/10.1016/j.jqsrt.2006.07.017.Search in Google Scholar

Yokota, T., S. Cesur, H. Suzuki, H. Baba, and Y. Takahata. 1999. “Anisotropic Scattering Model for Estimation of Light Absorption Rates in Photoreactor with Heterogeneous Medium.” Journal of Chemical Engineering of Japan 32: 314–21, https://doi.org/10.1252/jcej.32.314.Search in Google Scholar

Received: 2021-01-18
Accepted: 2021-02-18
Published Online: 2021-03-08

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.5.2024 from https://www.degruyter.com/document/doi/10.1515/ijcre-2021-0015/html
Scroll to top button