Skip to main content
Log in

Solid State Polymer Architecture of Empty Fruit Bunches of the African Oil Palm

  • RESEARCH ARTICLE
  • Published:
Reviews and Advances in Chemistry Aims and scope Submit manuscript

Abstract

Empty fruit bunches are a lignocellulosic waste byproduct of palm oil production. As is typical for many such fibres from a waste stream, the utilization of these fibres as material, or source of carbon for the production of bioethanol, is hampered by a poor knowledge of the solid state polymer nanostructure where a long fibrous crystalline polymer is embedded in an amorphous matrix. In this study we characterize the bionanocomposite structure, long fibrous cellulose crystals in an amorphous matrix, with X-ray scattering and solid state NMR of empty fruit bunches. Our aim is to provide a structural basis to understand the processing of fibres and their degradation. X-ray scattering both at small and wide angles provided a complementary perspective on the fundamental unit of cellulose organization, long fibrous crystallites called microfibrils: the spiral angle of microfibrils around fiber axis; and the organization of individual cellulose chains in the crystallites. Solid state NMR provides structural and compositional perspectives on the amorphous component. Some general comments on the complementary use of these two techniques in biofibers are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. O-Thong, S., Boe, K., and Angelidaki, I., Appl. Energy, 2012, vol. 93, p. 648.

    Article  CAS  Google Scholar 

  2. Pool, R., The Nexus of Biofuels, Climate Change, and Human Health: Workshop Summary, New York: Natl. Acad., 2013.

    Google Scholar 

  3. Widyasti, E., Shikata, A., Hashim, R., Sulaiman, O., Sudesh, K., Wahjono, E., and Kosugi, A., Enzyme Microb. Technol., 2018, vol. 111, p. 21.

    Article  CAS  PubMed  Google Scholar 

  4. Liu, W.-J., Jiang, H., and Yu, H.-Q., Green Chem., 2015, vol. 17, no. 11, p. 4888.

    Article  CAS  Google Scholar 

  5. Singh, P., Sulaiman, O., Hashim, R., Peng, L.C., and Singh, R.P., Environ., Dev. Sustainability, 2013, vol. 15, no. 2, p. 367.

    Article  Google Scholar 

  6. Fatah, I.Y.A., Khalil, H.P.S.A., Hossain, M.S., Aziz, A.A., Davoudpour, Y., Dungani, R., and Bhat, A., Polymers, 2014, vol. 6, no. 10, p. 2611.

    Article  CAS  Google Scholar 

  7. Jawaid, M., Abdul Khalil, H.P.S., and Abu Bakar, A., Mater. Sci. Eng., A, 2010, vol. 527, no. 29, p. 7944.

    Article  CAS  Google Scholar 

  8. Mohamad Haafiz, M.K., Eichhorn, S.J., Hassan, A., and Jawaid, M., Carbohydr. Polym., 2013, vol. 93, no. 2, p. 628.

    Article  CAS  PubMed  Google Scholar 

  9. Omar, F.N., Hafid, H.S., Baharuddin, A.S., Mohammed, M.A.P., and Abdullah, J., Planta, 2017, vol. 246, no. 3, p. 567.

    Article  CAS  PubMed  Google Scholar 

  10. Mohammad, I.N., Ongkudon, C.M., and Misson, M., Energies, 2020, vol. 13, no. 22, p. 5966.

    Article  CAS  Google Scholar 

  11. Fengel, D. and Wegener, G., Wood: Chemistry, Ultrastructure, Reactions, Berlin: De Gruyter, 2011.

    Google Scholar 

  12. Mark, R.E., Cell Wall Mechanics of Tracheids, London: Yale Univ. Press, 1967.

    Google Scholar 

  13. Doblin, M.S., Kurek, I., Jacob-Wilk, D., and Delmer, D.P., Plant Cell Physiol., 2002, vol. 43, no. 12, p. 1407.

    Article  CAS  PubMed  Google Scholar 

  14. Jarrett, K.J., Kirby, N., Buckley, C.E., and Garvey, C.J., Aust. J. Bot., 2020, vol. 68, no. 4, p. 267.

    Article  CAS  Google Scholar 

  15. Cave, I.D., Wood Sci. Technol., 1968, vol. 2, no. 4, p. 268.

    Article  Google Scholar 

  16. Jakob, H.F., Fratzl, P., and Tschegg, S.E., J. Struct. Biol., 1994, vol. 113, no. 1, p. 13.

    Article  Google Scholar 

  17. Jakob, H.F., Fengel, D., Tschegg, S.E., and Fratzl, P., Macromolecules, 1995, vol. 28, no. 26, p. 8782.

    Article  CAS  Google Scholar 

  18. Jakob, H.F., Tschegg, S.E., and Fratzl, P., Macromolecules, 1996, vol. 29, no. 26, p. 8435.

    Article  CAS  Google Scholar 

  19. van der Hart, D.L. and Atalla, R.H., Macromolecules, 1984, vol. 17, p. 1465.

    Article  CAS  Google Scholar 

  20. Newman, R.H., Solid State Nucl. Magn. Reson., 1999, vol. 15, p. 21.

    Article  CAS  PubMed  Google Scholar 

  21. Newman, R.H. and Hemmingson, J.A., Cellulose, 1994, vol. 2, p. 95.

    Article  Google Scholar 

  22. Wanrosli, W.D., Rohaizu, R., and Ghazali, A., Carbohydr. Polym., 2011, vol. 84, no. 1, p. 262.

    Article  CAS  Google Scholar 

  23. Pu, Y., Hallac, B., and Ragauskas, A.J., in Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals, Wyman, C.E., Ed., New York: Wiley, 2013, p. 369.

    Google Scholar 

  24. Moya, R., Munoz, F., Mata, S.J., and Soto, F.R., J. Oil Palm Res., 2013, vol. 25, no. 1, p. 138.

    Google Scholar 

  25. Ilavsky, J., J. Appl. Crystallogr., 2012, vol. 45, no. 2, p. 324.

    Article  CAS  Google Scholar 

  26. Earl, W.L. and van der Hart, D.L., J. Magn. Reson., 1982, vol. 48, p. 35.

    CAS  Google Scholar 

  27. Garvey, C., Parker, I., and Simon, G., Macromol. Chem. Phys., 2005, vol. 206, no. 15, p. 1568.

    Article  CAS  Google Scholar 

  28. French, A.D., Cellulose, 2014, vol. 21, no. 2, p. 885.

    Article  CAS  Google Scholar 

  29. Chen, H.-L. and Yokochi, A., J. Appl. Polym. Sci., 2000, vol. 76, no. 9, p. 1466.

    Article  CAS  Google Scholar 

  30. Garvey, C.J., Parker, I.H., and Simon, G.P., Macromol. Chem. Phys., 2005, vol. 206, no. 15, p. 1568.

    Article  CAS  Google Scholar 

  31. Newman, R.H., Hill, S.J., and Harris, P.J., Plant Physiol., 2013, vol. 163, no. 4, p. 1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fink, H.P., Hofmann, D., and Philipp, B., Cellulose, 1995, vol. 2, no. 1, p. 51.

    CAS  Google Scholar 

  33. Garvey, C.J., Simon, G.P., Whittaker, A.K., and Parker, I.H., Colloid Polym. Sci., 2019, vol. 297, no. 4, p. 521.

    Article  CAS  Google Scholar 

  34. Garvey, C.J., Impéror-Clerc, M., Rouzière, S., Gouadec, G., Boyron, O., Rowenczyk, L., Mingotaud, A.F., and ter Halle, A., Environ. Sci. Technol., 2020, vol. 54, no. 18, p. 11173.

    Article  CAS  PubMed  Google Scholar 

  35. Juraniec, M. and Gajda, B., Biol. Plant., 2020, vol. 64, no. 1, p. 363.

    Article  CAS  Google Scholar 

  36. Cave, I.D., Wood Sci. Technol., 1997, vol. 31, no. 3, p. 143.

    Article  CAS  Google Scholar 

  37. Cave, I.D., Wood Sci. Technol., 1997, vol. 31, no. 4, p. 225.

    Article  CAS  Google Scholar 

  38. Peura, M., Saren, M.P., Laukkanen, J., Nygard, K., Andersson, S., Saranpaa, P., Paakkari, T., Hamalainen, K., and Serimaa, R., Trees-Struct. Funct., 2008, vol. 22, no. 4, p. 499.

    Article  Google Scholar 

  39. Sarén, M.-P., Serimaa, R., Andersson, S., Saranpää, P., Keckes, J., and Fratzl, P., Trees-Struct. Funct., 2004, vol. 18, no. 3, p. 354.

    Article  Google Scholar 

  40. Gunawan, F.E., Homma, H., Brodjonegoro, S.S., Hudin, A.B.B., and Zainuddin, A.B., J. Solid Mech. Mater. Eng., 2009, vol. 3, no. 7, p. 943.

    Article  Google Scholar 

  41. Cave, I.D., Walker, J.C.F., Forest Prod. J., 1994, vol. 44, no. 5, p. 43.

    Google Scholar 

  42. Rammohan, K.T., in Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures, Selin, H., Ed., Dordrecht: Springer, 2008, p. 596.

    Google Scholar 

  43. Kulkarni, A.G., Satyanarayana, K.G., Sukumaran, K., and Rohatgi, P.K., J. Mater. Sci., 1981, vol. 16, no. 4, p. 905.

    Article  Google Scholar 

  44. Martinschitz, K.J., Boesecke, P., Garvey, C.J. Gindl, W., and Keckes, J., J. Mater. Sci., 2008, vol. 43, no. 1, p. 350.

    Article  CAS  Google Scholar 

  45. Lotfy, M., El-Osta, M., Kellogg, R., Foschi, R., and Butters, R., Wood Fiber Sci., 1973, vol. 5, no. 2, p. 118.

    Google Scholar 

  46. Garvey, C., Parker, I., Knott, R., and Simon, G., Holzforschung, 2004, vol. 58, no. 5, p. 473.

    Article  CAS  Google Scholar 

  47. Garvey, C.J., Simon, G.P., Knott, R.B., Whittaker, A.K., and Parker, I.H., The Science of Papermaking: Trans. of 12th Fund. Res. Symp., Oxford, 2001, p. 359.

  48. Reiterer, A., Jakob, H.F., Stanzl-Tschegg, S.E., and Fratzl, P., Wood Sci. Technol., 1998, vol. 32, no. 5, p. 335.

    Article  CAS  Google Scholar 

  49. Hatfield, G.R., Maciel, G.E., Erbatur, O., and Erbatur, G., J. Anal. Chem., 1987, vol. 59, no. 1, p. 172.

    Article  CAS  Google Scholar 

  50. Gallacher, J., Snape, C.E., Hassan, K., and Jarvis, M.C., J. Sci. Food Agric., 1994, vol. 64, no. 4, p. 487.

    Article  CAS  Google Scholar 

  51. Schmidt-Rohr, K. and Spiess, H.W., Multidimensional Solid-State NMR and Polymers, New York: Academic, 1994.

    Google Scholar 

  52. Hill, D.J.T., Le, T.T., and Whittaker, A.K., Cellulose, 1994, vol. 1, no. 4, p. 237.

    Article  CAS  Google Scholar 

  53. Newman, R.H., Solid State Nucl. Magn. Reson., 1999, vol. 15, no. 1, p. 21.

    Article  CAS  PubMed  Google Scholar 

  54. Newman, R.H., Holzforschung, 1992, vol. 46, no. 3, p. 205.

    Article  CAS  Google Scholar 

  55. Schmidt-Rohr, K., Clauss, J., and Spiess, H.W., Macromolecules, 1992, vol. 25, no. 12, p. 3273.

    Article  CAS  Google Scholar 

  56. Liitiä, T., Maunu, S.L., Sipilä, J., and Hortling, B., Solid State Nucl. Magn. Reson., 2002, vol. 21, no. 3, p. 171.

    Article  CAS  Google Scholar 

  57. Martínez, A.T., González, A.E., Valmaseda, M., Dale, B.E., Lambregts, M.J., and Haw J.F., Holzforschung, 1991, vol. 45, no. s1, p. 49.

    Article  Google Scholar 

  58. Penttila, P.A., Rautkari, L., Osterberg, M., and Schweins, R., J. Appl. Crystallogr., 2019, vol. 52, no. 2, p. 369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Prof. Andrew Whittaker (Australian Institute for Bioengineering and Nanotechnology, The University of Queensland) for acquisition of solid state NMR spectra.

Funding

KJJ acknowledges the support from ANSTO and a Curtin University Postgraduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Garvey.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarrett, K., Buckley, C. & Garvey, C.J. Solid State Polymer Architecture of Empty Fruit Bunches of the African Oil Palm. rev. and adv. in chem. 11, 166–177 (2021). https://doi.org/10.1134/S2079978021030031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079978021030031

Keywords:

Navigation