Skip to main content

Advertisement

Log in

Invasion Frameworks: a Forest Pathogen Perspective

  • FOREST PATHOLOGY (J WITZELL, SECTION EDITOR)
  • Published:
Current Forestry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Within the discipline of invasion science, researchers studying different taxonomic groups have developed distinct ways of investigating the phenomenon of biological invasions. While there have been efforts to reconcile these differences, a lack of knowledge of diversity, biogeography and ecology hampers researchers seeking to understand invasive microorganisms, including invasive forest pathogens (IFPs).

Recent Findings

Advances in molecular technologies such as gene and genome sequencing and metagenomics studies have increased the ‘visibility’ of microorganisms, providing opportunities to better integrate forest pathology and invasion science. The two fields have much to gain from closer collaboration.

Summary

We propose a modified version of the Unified Framework for Biological Invasions to accommodate IFPs, recognising the challenges and limitations, and suggest options for tackling these issues. We explore the pathways by which IFPs are transported and in doing so highlight the need for the refinement of current pathway frameworks to better accommodate IFPs. With a clearer understanding of how microorganisms move around and the stages they pass through to become invasive, we hope that forest pathologists will better understand how and why invasions occur and, importantly, where, when, and how invasions can be stopped or mitigated. We call for a broader incorporation of ecological and evolutionary concepts to address the complex challenges of identifying and managing IFPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Pysek P, Hulme PE, Simberloff D, Bacher S, Blackburn TM, Carlton JT, et al. Scientists’ warning on invasive alien species. Biol Rev Camb Philos Soc. 2020;95(6):1511–34. https://doi.org/10.1111/brv.12627.

    Article  Google Scholar 

  2. Wilson JRU, Datta A, Hirsch H, Keet J-H, Mbobo T, Nkuna KV, et al. Is invasion science moving towards agreed standards? The influence of selected frameworks NeoBiota. 2020;62:569–90. https://doi.org/10.3897/neobiota.62.53243.

    Article  Google Scholar 

  3. Paap T, Wingfield MJ, Burgess TI, Hulbert JM, Santini A. Harmonising the fields of invasion science and forest pathology. NeoBiota. 2020;62:301–32. https://doi.org/10.3897/neobiota.62.52991.

    Article  Google Scholar 

  4. Wingfield MJ, Slippers B, Wingfield BD, Barnes I. The unified framework for biological invasions: a forest fungal pathogen perspective. Biol Invasions. 2017;19(11):3201–14. https://doi.org/10.1007/s10530-017-1450-0.

    Article  Google Scholar 

  5. Diagne C, Leroy B, Vaissière A-C, Gozlan RE, Roiz D, Jarić I, et al. High and rising economic costs of biological invasions worldwide. Nature. 2021;592(7855):571–6. https://doi.org/10.1038/s41586-021-03405-6.

    Article  CAS  Google Scholar 

  6. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, et al. Emerging fungal threats to animal, plant and ecosystem health. Nature. 2012;484(7393):186–94. https://doi.org/10.1038/nature10947.

    Article  CAS  Google Scholar 

  7. Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’Connell C, et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agr Ecosyst Environ. 2001;84(1):1–20. https://doi.org/10.1016/S0167-8809(00)00178-X.

    Article  Google Scholar 

  8. Ricciardi A, Blackburn TM, Carlton JT, Dick JTA, Hulme PE, Iacarella JC, et al. Invasion Science: a horizon scan of emerging challenges and opportunities. Trends Ecol Evol. 2017;32(6):464–74. https://doi.org/10.1016/j.tree.2017.03.007.

    Article  Google Scholar 

  9. Roy HE, Hesketh H, Purse BV, Eilenberg J, Santini A, Scalera R, et al. Alien pathogens on the horizon: Opportunities for predicting their threat to wildlife. Conserv Lett. 2017;10(4):477–84. https://doi.org/10.1111/conl.12297.

    Article  Google Scholar 

  10. • Ogden NH, Wilson JRU, Richardson DM, Hui C, Davies SJ, Kumschick S, et al. Emerging infectious diseases and biological invasions: a call for a One Health collaboration in science and management. R Soc Open Sci. 2019;6(3): 181577. https://doi.org/10.1098/rsos.181577. (The authors highlight how biological invasions and emerging infectious diseases are similar phenomena, but practitioners have often work in parallel. They call for increased collaborations between invasion scientists, disease ecologists, and epidemiologists to enhance our understanding and management of invasions and EIDs.)

    Article  Google Scholar 

  11. Rigling D, Prospero S. Cryphonectria parasitica, the causal agent of chestnut blight: invasion history, population biology and disease control. Mol Plant Pathol. 2018;19(1):7–20. https://doi.org/10.1111/mpp.12542.

    Article  CAS  Google Scholar 

  12. Pautasso M, Aas G, Queloz V, Holdenrieder O. European ash (Fraxinus excelsior) dieback – a conservation biology challenge. Biol Cons. 2013;158:37–49. https://doi.org/10.1016/j.biocon.2012.08.026.

    Article  Google Scholar 

  13. Fernandez Winzer L, Cuddy W, Pegg GS, Carnegie AJ, Manea A, Leishman MR. Plant architecture, growth and biomass allocation effects of the invasive pathogen myrtle rust (Austropuccinia psidii) on Australian Myrtaceae species after fire. Austral Ecol. 2020;45(2):177–86. https://doi.org/10.1111/aec.12845.

    Article  Google Scholar 

  14. Shearer BL, Crane CE, Barrett S, Cochrane A. Phytophthora cinnamomi invasion, a major threatening process to conservation of flora diversity in the South-west Botanical Province of Western Australia. Aust J Bot. 2007;55(3):225–38. https://doi.org/10.1071/BT06019.

    Article  Google Scholar 

  15. •• Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, et al. A proposed unified framework for biological invasions. Trends Ecol Evol. 2011;26(7):333–9. https://doi.org/10.1016/j.tree.2011.03.023. (One of the most influential frameworks in invasion science, the Unified Framework aimed to link frameworks developed by botanists and zoologists, to describe the introduction-naturalisation-invasion continuum.)

    Article  Google Scholar 

  16. Desprez-Loustau M-L, Robin C, Buée M, Courtecuisse R, Garbaye J, Suffert F, et al. The fungal dimension of biological invasions. Trends Ecol Evol. 2007;22(9):472–80. https://doi.org/10.1016/j.tree.2007.04.005.

    Article  Google Scholar 

  17. • Santini A, Ghelardini L, De Pace C, Desprez-Loustau ML, Capretti P, Chandelier A, et al. Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytol. 2013;197(1):238–50. https://doi.org/10.1111/j.1469-8137.2012.04364.x. (A valuable database of alien forest pathogens in twenty European countries since 1800.)

    Article  CAS  Google Scholar 

  18. Ghelardini L, Luchi N, Pecori F, Pepori AL, Danti R, Della Rocca G, et al. Ecology of invasive forest pathogens. Biol Invasions. 2017;19(11):3183–200. https://doi.org/10.1007/s10530-017-1487-0.

    Article  Google Scholar 

  19. Nunez MA, Pauchard A, Ricciardi A. Invasion science and the global spread of SARS-CoV-2. Trends Ecol Evol. 2020;35(8):642–5. https://doi.org/10.1016/j.tree.2020.05.004.

    Article  Google Scholar 

  20. •• Thakur MP, van der Putten WH, Cobben MMP, van Kleunen M, Geisen S. Microbial invasions in terrestrial ecosystems. Nat Rev Microbiol. 2019;17(10):621–31. https://doi.org/10.1038/s41579-019-0236-z. (An important review highlighting recent advances in microbial invasion research. The authors identify important research gaps and suggest approaches to address these.)

    Article  CAS  Google Scholar 

  21. Zengeya T, Wilson J. The status of biological invasions and their management in South Africa in 2019. South African National Biodiversity Institute, Kirstenbosch and DSI-NRF Centre of Excellence for Invasion Biology, Stellenbosch. 2020. p. 71.

  22. Hulme PE, Bacher S, Kenis M, Klotz S, Kühn I, Minchin D, et al. Grasping at the routes of biological invasions: a framework for integrating pathways into policy. J Appl Ecol. 2008;45(2):403–14. https://doi.org/10.1111/j.1365-2664.2007.01442.x.

    Article  Google Scholar 

  23. Harrower C, Scalera R, Pagad S, Schonrogge K, Roy H. Guidance for interpretation of CBD categories on introduction pathways. Technical note prepared by IUCN for the European Commission; 2018. p. 1–100.

  24. Brasier CM, Buck KW. Rapid evolutionary changes in a globally invading fungal pathogen (Dutch elm disease). Biol Invasions. 2001;3:223–33. https://doi.org/10.1023/A:1015248819864.

    Article  Google Scholar 

  25. Essl F, Bacher S, Genovesi P, Hulme PE, Jeschke JM, Katsanevakis S, et al. Which taxa are alien? Criteria, applications, and uncertainties. Bioscience. 2018;68(7):496–509. https://doi.org/10.1093/biosci/biy057.

    Article  Google Scholar 

  26. Prospero S, Botella L, Santini A, Robin C. Biological control of emerging forest diseases: How can we move from dreams to reality? For Ecol Manage. 2021;496: 119377. https://doi.org/10.1016/j.foreco.2021.119377.

    Article  Google Scholar 

  27. Burdon JJ, Thrall PH. Coevolution of plants and their pathogens in natural habitats. Science. 2009;324(5928):755–6. https://doi.org/10.1126/science.1171663.

    Article  CAS  Google Scholar 

  28. Burgess TI, Oliva J, Sapsford S, Sakalidis ML, Balocchi F, Paap T. Anthropogenic disturbances and the emergence of native diseases; a threat to forest health Curr For Rep. 2021.

  29. Litchman E. Invisible invaders: non-pathogenic invasive microbes in aquatic and terrestrial ecosystems. Ecol Lett. 2010;13(12):1560–72. https://doi.org/10.1111/j.1461-0248.2010.01544.x.

  30. MacLeod A, Pautasso M, Jeger MJ, Haines-Young R. Evolution of the international regulation of plant pests and challenges for future plant health. Food Secur. 2010;2(1):49–70. https://doi.org/10.1007/s12571-010-0054-7.

  31. •• Hulme PE. Advancing One Biosecurity to address the pandemic risks of biological invasions. Bioscience. 2021;71(7):708–21. https://doi.org/10.1093/biosci/biab019. (This overview article examines the failures of disjointed policies to adequately address human, animal, plant, or environmental health in isolation. One Biosecurity is proposed as an alternative to address biosecurity risks transcending the traditional boundaries of health, agriculture, and the environment.)

    Article  Google Scholar 

  32. WTO. Agreement on the application of sanitary and phytosanitary measures (the SPS Agreement). Rome: World Trade Organization; 1995.

  33. Dunn AM, Hatcher MJ. Parasites and biological invasions: parallels, interactions, and control. Trends Parasitol. 2015;31(5):189–99. https://doi.org/10.1016/j.pt.2014.12.003.

    Article  Google Scholar 

  34. Brasier CM. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol. 2008;57(5):792–808. https://doi.org/10.1111/j.1365-3059.2008.01886.x.

    Article  Google Scholar 

  35. Coutinho TA, Wingfield MJ, Alfenas AC, Crous PW. Eucalyptus rust: a disease with the potential for serious international implications. Plant Dis. 1998;82(7):819–25. https://doi.org/10.1094/pdis.1998.82.7.819.

    Article  CAS  Google Scholar 

  36. Barnes I, Nakabonge G, Roux J, Wingfield BD, Wingfield MJ. Comparison of populations of the wilt pathogen Ceratocystis albifundus in South Africa and Uganda. Plant Pathol. 2005;54(2):189–95. https://doi.org/10.1111/j.1365-3059.2005.01144.x.

    Article  CAS  Google Scholar 

  37. Slippers B, Stenlid J, Wingfield MJ. Emerging pathogens: fungal host jumps following anthropogenic introduction. Trends Ecol Evol. 2005;20(8):420–1.

    Article  Google Scholar 

  38. Desprez-Loustau M-L, Marçais B, Nageleisen L-M, Piou D, Vannini A. Interactive effects of drought and pathogens in forest trees. Ann For Sci. 2006;63(6):597–612. https://doi.org/10.1051/forest:2006040.

    Article  Google Scholar 

  39. Ramsfield TD, Bentz BJ, Faccoli M, Jactel H, Brockerhoff EG. Forest health in a changing world: effects of globalization and climate change on forest insect and pathogen impacts. Forestry. 2016;89(3):245–52. https://doi.org/10.1093/forestry/cpw018.

    Article  Google Scholar 

  40. Paap T, Burgess TI, Rolo V, Steel E, Hardy GESJ. Anthropogenic disturbance impacts stand structure and susceptibility of an iconic tree species to an endemic canker pathogen. For Ecol Manage. 2018;425:145–53. https://doi.org/10.1016/j.foreco.2018.05.055.

    Article  Google Scholar 

  41. Balocchi F, Wingfield MJ, Ahumada R, Barnes I. Pewenomyces kutranfy gen. nov. et sp. nov. causal agent of an important canker disease on Araucaria araucana in Chile. Plant Pathol. 2021;70(5):1243–59. doi:https://doi.org/10.1111/ppa.13353.

  42. Burgess TI, Wingfield MJ. Pathogens on the move: a 100-year global experiment with planted eucalypts. Bioscience. 2017;67(1):14–25. https://doi.org/10.1093/biosci/biw146.

    Article  Google Scholar 

  43. Gordon TR. Pitch Canker Disease of Pines. Phytopathology. 2006;96(6):657–9. https://doi.org/10.1094/phyto-96-0657.

    Article  CAS  Google Scholar 

  44. Wingfield MJ, Hammerbacher A, Ganley RJ, Steenkamp ET, Gordon TR, Wingfield BD, et al. Pitch canker caused by Fusarium circinatum — a growing threat to pine plantations and forests worldwide. Australas Plant Pathol. 2008;37(4):319–34. https://doi.org/10.1071/AP08036.

    Article  Google Scholar 

  45. Drenkhan R, Ganley B, Martín-García J, Vahalík P, Adamson K, Adamčíková K, et al. Global geographic distribution and host range of Fusarium circinatum, the causal agent of pine pitch canker. Forests. 2020;11(7):724.

    Article  Google Scholar 

  46. CBD. Pathways of introduction of invasive species, their prioritization and management. Secretariat of the Convention on Biological Diversity Montréal; 2014. p. 1–18.

  47. Burgess TI, Crous CJ, Slippers B, Hantula J, Wingfield MJ. Tree invasions and biosecurity: eco-evolutionary dynamics of hitchhiking fungi. AoB PLANTS. 2016;8. doi:https://doi.org/10.1093/aobpla/plw076.

  48. Cleary M, Oskay F, Doğmuş HT, Lehtijärvi A, Woodward S, Vettraino AM. Cryptic risks to forest biosecurity associated with the global movement of commercial seed. Forests. 2019;10(5):459.

    Article  Google Scholar 

  49. Franić I, Prospero S, Hartmann M, Allan E, Auger-Rozenberg M-A, Grünwald NJ, et al. Are traded forest tree seeds a potential source of nonnative pests? Ecol Appl. 2019;29(7): e01971. https://doi.org/10.1002/eap.1971.

    Article  Google Scholar 

  50. McCullough DG, Work TT, Cavey JF, Liebhold AM, Marshall D. Interceptions of nonindigenous plant pests at US ports of entry and border crossings over a 17-year period. Biol Invasions. 2006;8(4):611. https://doi.org/10.1007/s10530-005-1798-4.

    Article  Google Scholar 

  51. Hulme PE. Invasion pathways at a crossroad: policy and research challenges for managing alien species introductions. J Appl Ecol. 2015;52(6):1418–24. https://doi.org/10.1111/1365-2664.12470.

    Article  Google Scholar 

  52. McNeill M, Phillips C, Young S, Shah F, Aalders L, Bell N, et al. Transportation of nonindigenous species via soil on international aircraft passengers’ footwear. Biol Invasions. 2011;13(12):2799–815. https://doi.org/10.1007/s10530-011-9964-3.

    Article  Google Scholar 

  53. Ridley G, Bain J, Bulman L, Dick M, Kay M. Threats to New Zealand’s indigenous forests from exotic pathogens and pests. Science for Conservation. 2000;142:1–67.

    Google Scholar 

  54. Faulkner KT, Hulme PE, Pagad S, Wilson JRU, Robertson MP. Classifying the introduction pathways of alien species: are we moving in the right direction? NeoBiota. 2020;62. doi:https://doi.org/10.3897/neobiota.62.53543.

  55. FAO. Glossary of phytosanitary terms. International Standard for Phytosanitary Measures No. 5. Rome: FAO on behalf of the Secretariat of the International Plant Protection Convention; 2021.

  56. FAO. Framework for Pest Risk Analysis. International Standard for Phytosanitary Measures No. 2. Rome: FAO on behalf of the Secretariat of the International Plant Protection Convention; 2016.

  57. FAO. Pest Risk Analysis for non-quarantine pests. International Standard for Phytosanitary Measures No. 21. Rome: FAO on behalf of the Secretariat of the International Plant Protection Convention; 2016.

  58. FAO. Pest Risk Analysis for Quarantine Pests. International Standard for Phytosanitary Measures No. 11. Rome: FAO on behalf of the Secretariat of the International Plant Protection Convention; 2017.

  59. FAO. Regulation of Wood Packaging Material in International Trade. International Standard for Phytosanitary Measures No. 15. Rome: FAO on behalf of the Secretariat of the International Plant Protection Convention; 2009.

  60. FAO. International movement of seeds. International Standard for Phytosanitary Measures No. 38. Rome: FAO on behalf of the Secretariat of the International Plant Protection Convention; 2017.

  61. FAO. Report of the meeting of the Focus Group on Commodity and Pathway Standards. Rome: FAO on behalf of the Secretariat of the International Plant Protection Convention; 2019. p. 36.

  62. Hatcher MJ, Dick JTA, Dunn AM. Disease emergence and invasions. Funct Ecol. 2012;26(6):1275–87. https://doi.org/10.1111/j.1365-2435.2012.02031.x.

    Article  Google Scholar 

  63. Chapple DG, Simmonds SM, Wong BB. Can behavioral and personality traits influence the success of unintentional species introductions? Trends Ecol Evol. 2012;27(1):57–64. https://doi.org/10.1016/j.tree.2011.09.010.

    Article  Google Scholar 

  64. Migliorini D, Ghelardini L, Tondini E, Luchi N, Santini A. The potential of symptomless potted plants for carrying invasive soilborne plant pathogens. Divers Distrib. 2015;21(10):1218–29. https://doi.org/10.1111/ddi.12347.

    Article  Google Scholar 

  65. Liebhold AM, Brockerhoff EG, Garrett LJ, Parke JL, Britton KO. Live plant imports: the major pathway for forest insect and pathogen invasions of the US. Front Ecol Environ. 2012;10(3):135–43. https://doi.org/10.1890/110198.

    Article  Google Scholar 

  66. • Oliva J, Redondo MA, Stenlid J. Functional ecology of forest disease. Annu Rev Phytopathol. 2020;58:343–61. https://doi.org/10.1146/annurev-phyto-080417-050028. (This review proposes the development of a functional ecology approach to forest pathology, focussing on building functional trait databases to assist forest pathologists in dealing with the increasing complex problems posed by forest pathogens under global change.)

    Article  CAS  Google Scholar 

  67. • Burdon JJ, Thrall PH, Ericson L. Genes, communities & invasive species: understanding the ecological and evolutionary dynamics of host-pathogen interactions. Curr Opin Plant Biol. 2013;16(4):400–5. https://doi.org/10.1016/j.pbi.2013.05.003An important review highlighting how viewing host-pathogen associations within an ecological-evolutionary continuum can enhance our understanding of the role of genetics and ecology in the dynamics of both natural and invasive host-pathogen associations.

    Article  CAS  Google Scholar 

  68. Desprez-Loustau M-L, Hamelin FM, Marçais B. The ecological and evolutionary trajectory of oak powdery mildew in Europe. In: Fenton A, Tompkins D, Wilson K, editors. Wildlife Disease Ecology: Linking Theory to Data and Application. Ecological Reviews. Cambridge: Cambridge University Press; 2019. p. 429–57.

  69. •• Desprez-Loustau M-L, Aguayo J, Dutech C, Hayden KJ, Husson C, Jakushkin B, et al. An evolutionary ecology perspective to address forest pathology challenges of today and tomorrow. Ann For Sci. 2016;73(1):45–67. https://doi.org/10.1007/s13595-015-0487-4. (A valuable review detailing the importance of evolutionary ecology perspectives, the authors also provide policy recommendations and identify areas of research need.)

    Article  Google Scholar 

  70. Gladieux P, Guerin F, Giraud T, Caffier V, Lemaire C, Parisi L, et al. Emergence of novel fungal pathogens by ecological speciation: importance of the reduced viability of immigrants. Mol Ecol. 2011;20(21):4521–32. https://doi.org/10.1111/j.1365-294X.2011.05288.x.

    Article  Google Scholar 

  71. • Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, et al. Global diversity and geography of soil fungi. Science. 2014;346(6213):1256688. https://doi.org/10.1126/science.1256688The first global survey to show the presence of strong biogeographical patterns and variable latitudinal diversity gradients in fungi.

    Article  CAS  Google Scholar 

  72. Santini A, Liebhold A, Migliorini D, Woodward S. Tracing the role of human civilization in the globalization of plant pathogens. ISME J. 2018;12(3):647–52.

    Article  Google Scholar 

  73. Paap T, Burgess TI, Wingfield MJ. Urban trees: bridge-heads for forest pest invasions and sentinels for early detection. Biol Invasions. 2017;19(12):3515–26. https://doi.org/10.1007/s10530-017-1595-x.

    Article  Google Scholar 

  74. Eschen R, Britton K, Brockerhoff E, Burgess T, Dalley V, Epanchin-Niell RS, et al. International variation in phytosanitary legislation and regulations governing importation of plants for planting. Environ Sci Policy. 2015;51:228–37. https://doi.org/10.1016/j.envsci.2015.04.021.

    Article  Google Scholar 

  75. Jung T, Orlikowski L, Henricot B, Abad-Campos P, Aday AG, Aguín Casal O, et al. Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. Forest Pathol. 2016;46(2):134–63. https://doi.org/10.1111/efp.12239.

    Article  Google Scholar 

  76. Eschen R, Douma JC, Grégoire J-C, Mayer F, Rigaux L, Potting RPJ. A risk categorisation and analysis of the geographic and temporal dynamics of the European import of plants for planting. Biol Invasions. 2017;19(11):3243–57. https://doi.org/10.1007/s10530-017-1465-6.

    Article  Google Scholar 

  77. Luchi N, Ioos R, Santini A. Fast and reliable molecular methods to detect fungal pathogens in woody plants. Appl Microbiol Biotechnol. 2020;104(6):2453–68. https://doi.org/10.1007/s00253-020-10395-4.

    Article  CAS  Google Scholar 

  78. Chimento A, Cacciola SO, Garbelotto M. Detection of mRNA by reverse-transcription PCR as an indicator of viability in Phytophthora ramorum. Forest Pathol. 2012;42(1):14–21. https://doi.org/10.1111/j.1439-0329.2011.00717.x.

    Article  Google Scholar 

  79. Kunadiya MB, Burgess TI, A. Dunstan W, White D, StJ. Hardy GE. Persistence and degradation of Phytophthora cinnamomi DNA and RNA in different soil types. Environ DNA. 2021;3(1):92–104. https://doi.org/10.1002/edn3.127.

  80. Kunadiya MB, Dunstan WD, White D, Hardy GESJ, Grigg AH, Burgess TI. A qPCR assay for the detection of Phytophthora cinnamomi including an mRNA protocol designed to establish propagule viability in environmental samples. Plant Dis. 2019;103(9):2443–50. https://doi.org/10.1094/pdis-09-18-1641-re.

    Article  CAS  Google Scholar 

  81. Hamelin RC, Roe AD. Genomic biosurveillance of forest invasive alien enemies: a story written in code. Evol Appl. 2020;13(1):95–115. https://doi.org/10.1111/eva.12853.

    Article  Google Scholar 

  82. Eschen R, O’Hanlon R, Santini A, Vannini A, Roques A, Kirichenko N, et al. Safeguarding global plant health: the rise of sentinels. J Pest Sci. 2019;92(1):29–36. https://doi.org/10.1007/s10340-018-1041-6.

    Article  Google Scholar 

  83. Wondafrash M, Wingfield MJ, Wilson JRU, Hurley BP, Slippers B, Paap T. Botanical gardens as key resources and hazards for biosecurity. Biodivers Conserv. 2021;30(7):1929–46. https://doi.org/10.1007/s10531-021-02180-0.

    Article  Google Scholar 

  84. Roux J, Greyling I, Coutinho TA, Verleur M, Wingfeld MJ. The Myrtle rust pathogen, Puccinia psidii, discovered in Africa. IMA Fungus. 2013;4(1):155–9. https://doi.org/10.5598/imafungus.2013.04.01.14.

    Article  Google Scholar 

  85. Secretariat I. Identification of risks and management of invasive alien species using the IPPC framework. Proceedings of the workshop on invasive alien species and the International Plant Protection Convention, Braunschweig, Germany, 22–26 September 2003. Rome: FAO; 2005. p. xii + 301.

  86. FAO. Strategic framework for the International Plant Protection Convention (IPPC) 2020–2030. Rome: FAO on behalf of the Secretariat of the International Plant Protection Convention; 2019.

  87. Eschen R, Rigaux L, Sukovata L, Vettraino AM, Marzano M, Grégoire J-C. Phytosanitary inspection of woody plants for planting at European Union entry points: a practical enquiry. Biol Invasions. 2015;17(8):2403–13. https://doi.org/10.1007/s10530-015-0883-6.

    Article  Google Scholar 

  88. Grünwald NJ, Garbelotto M, Goss EM, Heungens K, Prospero S. Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends Microbiol. 2012;20(3):131–8. https://doi.org/10.1016/j.tim.2011.12.006.

    Article  CAS  Google Scholar 

  89. Frankel S, Alexander J, Benner D, Hillman J, Shor A. Phytophthora pathogens threaten rare habitats and conservation plantings. Sibbaldia. 2020;18:53–65. https://doi.org/10.23823/Sibbaldia/2020.288.

  90. Kowalski T. Chalara fraxinea sp. nov. associated with dieback of ash (Fraxinus excelsior) in Poland. Forest Pathology. 2006;36(4):264–70.

  91. Kowalski T, Holdenrieder O. The teleomorph of Chalara fraxinea, the causal agent of ash dieback. Forest Pathol. 2009;39(5):304–8. https://doi.org/10.1111/j.1439-0329.2008.00589.x.

    Article  Google Scholar 

  92. Queloz V, Grünig CR, Berndt R, Kowalski T, Sieber TN, Holdenrieder O. Cryptic speciation in Hymenoscyphus albidus. Forest Pathol. 2011;41(2):133–42.

    Article  Google Scholar 

  93. Cleary M, Nguyen D, Marčiulynienė D, Berlin A, Vasaitis R, Stenlid J. Friend or foe? Biological and ecological traits of the European ash dieback pathogen Hymenoscyphus fraxineus in its native environment. Sci Rep. 2016;6(1):1–11.

    Article  Google Scholar 

  94. Zhao Y-J, Hosoya T, Baral H-O, Hosaka K, Kakishima M. Hymenoscyphus pseudoalbidus, the correct name for Lambertella albida reported from Japan. Mycotaxon. 2013;122(1):25–41.

    Article  Google Scholar 

  95. Zenni RD, Dickie IA, Wingfield MJ, Hirsch H, Crous CJ, Meyerson LA et al. Evolutionary dynamics of tree invasions: complementing the unified framework for biological invasions. AoB PLANTS. 2016;9(1). doi:https://doi.org/10.1093/aobpla/plw085.

  96. Kinloch BB, Davis DA, Burton D. Resistance and virulence interactions between two white pine species and blister rust in a 30-year field trial. Tree Genet Genomes. 2008;4(1):65–74. https://doi.org/10.1007/s11295-007-0088-y.

    Article  Google Scholar 

  97. Aguayo J, Halkett F, Husson C, Nagy ZA, Szigethy A, Bakonyi J, et al. Genetic diversity and origins of the homoploid-type hybrid Phytophthora x alni. Appl Environ Microbiol. 2016;82(24):7142–53. https://doi.org/10.1128/AEM.02221-16.

    Article  CAS  Google Scholar 

  98. Groom Q, Desmet P, Reyserhove L, Adriaens T, Oldoni D, Vanderhoeven S et al. Improving Darwin Core for research and management of alien species. Biodiversity Information Science and Standards. 2019;3. doi:https://doi.org/10.3897/biss.3.38084.

  99. Carnegie AJ, Pegg GS. Lessons from the incursion of myrtle rust in Australia. Annu Rev Phytopathol. 2018;56(1):457–78. https://doi.org/10.1146/annurev-phyto-080516-035256.

    Article  CAS  Google Scholar 

  100. Félix C, Pinto G, Amaral J, Fernandes I, Alves A, Esteves AC. Strain-related pathogenicity in Diplodia corticola. Forest Pathol. 2017;47(6): e12366. https://doi.org/10.1111/efp.12366.

    Article  Google Scholar 

  101. Rodoni BC, Merriman PR, McKirdy SJ, Wittwer G, editors. Costs associated with fire blight incursion management and predicted costs of future incursions. 2006: International Society for Horticultural Science (ISHS), Leuven, Belgium.

  102. Vainio EJ, Bezos D, Bragança H, Cleary M, Fourie G, Georgieva M, et al. Sampling and detection strategies for the pine pitch canker (PPC) disease pathogen Fusarium circinatum in Europe. Forests. 2019;10(9):723.

    Article  Google Scholar 

  103. Stenlid J, Oliva J, Boberg JB, Hopkins AJM. Emerging diseases in European forest ecosystems and responses in society. Forests. 2011;2(2):486–504.

    Article  Google Scholar 

  104. Klapwijk MJ, Hopkins AJ, Eriksson L, Pettersson M, Schroeder M, Lindelow A, et al. Reducing the risk of invasive forest pests and pathogens: Combining legislation, targeted management and public awareness. Ambio. 2016;45(Suppl 2):223–34. https://doi.org/10.1007/s13280-015-0748-3.

    Article  Google Scholar 

  105. Barnes I CP, Wingfield BD, Wingfield MJ Multigene phylogenies reveal that red band needle blight of Pinus is caused by two distinct species of Dothistroma, D. septosporum and D. pini. Stud Mycol 2004;50:551–65

  106. Andjic V, Carnegie AJ, Pegg GS, Hardy GESJ, Maxwell A, Crous PW, et al. 23 years of research on Teratosphaeria leaf blight of Eucalyptus. For Ecol Manage. 2019;443:19–27. https://doi.org/10.1016/j.foreco.2019.04.013.

    Article  Google Scholar 

  107. Soubeyrand S, de Jerphanion P, Martin O, Saussac M, Manceau C, Hendrikx P, et al. Inferring pathogen dynamics from temporal count data: the emergence of Xylella fastidiosa in France is probably not recent. New Phytol. 2018;219(2):824–36. https://doi.org/10.1111/nph.15177.

    Article  Google Scholar 

  108. Philibert A, Desprez-Loustau M-L, Fabre B, Frey P, Halkett F, Husson C, et al. Predicting invasion success of forest pathogenic fungi from species traits. J Appl Ecol. 2011;48(6):1381–90. https://doi.org/10.1111/j.1365-2664.2011.02039.x.

    Article  Google Scholar 

  109. Graham JH, Gottwald TR, Cubero J, Achor DS. Xanthomonas axonopodis pv. citri: factors affecting successful eradication of citrus canker. Mol Plant Pathol. 2004;5(1):1–15. doi:https://doi.org/10.1046/j.1364-3703.2004.00197.x.

  110. Smith GR, Fletcher JD, Marroni V, Kean JM, Stringer LD, Vereijssen J. Plant pathogen eradication: determinants of successful programs. Australas Plant Pathol. 2017;46(3):277–84. https://doi.org/10.1007/s13313-017-0489-9.

    Article  Google Scholar 

  111. Pluess T, Jarošík V, Pyšek P, Cannon R, Pergl J, Breukers A, et al. Which Factors Affect the Success or Failure of Eradication Campaigns against Alien Species? PLoS ONE. 2012;7(10): e48157. https://doi.org/10.1371/journal.pone.0048157.

    Article  CAS  Google Scholar 

  112. Santini A, Battisti A. Complex insect–pathogen interactions in tree pandemics. Front Physiol. 2019;10(550). doi:https://doi.org/10.3389/fphys.2019.00550.

  113. Olson Å, Stenlid J. Pathogenic fungal species hybrids infecting plants. Microbes Infect. 2002;4(13):1353–9. https://doi.org/10.1016/S1286-4579(02)00005-9.

    Article  CAS  Google Scholar 

  114. Redondo MA, Boberg J, Stenlid J, Oliva J. Functional traits associated with the establishment of introduced Phytophthora spp. Swedish forests. J Appl Ecol. 2018;55(3):1538–52. https://doi.org/10.1111/1365-2664.13068.

    Article  Google Scholar 

  115. Barwell LJ, Perez-Sierra A, Henricot B, Harris A, Burgess TI, Hardy G, et al. Evolutionary trait-based approaches for predicting future global impacts of plant pathogens in the genus Phytophthora. J Appl Ecol. 2021;58(4):718–30. https://doi.org/10.1111/1365-2664.13820.

    Article  Google Scholar 

  116. Prospero S, Cleary M. Effects of host variability on the spread of invasive forest diseases. Forests. 2017;8(3). doi:https://doi.org/10.3390/f8030080.

  117. Meentemeyer RK, Haas SE, Václavík T. Landscape epidemiology of emerging infectious diseases in natural and human-altered ecosystems. Annu Rev Phytopathol. 2012;50(1):379–402. https://doi.org/10.1146/annurev-phyto-081211-172938.

    Article  CAS  Google Scholar 

  118. Bonello P, Campbell FT, Cipollini D, Conrad AO, Farinas C, Gandhi KJK et al. Invasive tree pests devastate ecosystems—a proposed new response framework. Front For Glob Change. 2020;3. https://doi.org/10.3389/ffgc.2020.00002.

  119. Taole M, Bihon W, Wingfield BD, Wingfield MJ, Burgess TI. Multiple introductions from multiple sources: invasion patterns for an important Eucalyptus leaf pathogen. Ecol Evol. 2015;5(18):4210–20. https://doi.org/10.1002/ece3.1693.

    Article  Google Scholar 

  120. Hunter GC, Van Der Merwe NA, Burgess TI, Carnegie AJ, Wingfield BD, Crous PW et al. Global movement and population biology of Mycosphaerella nubilosa infecting leaves of cold-tolerant Eucalyptus globulus and E. nitens. Plant Pathol. 2008;57(2):235–42. doi:https://doi.org/10.1111/j.1365-3059.2007.01756.x.

  121. Sakalidis ML, Slippers B, Wingfield BD, Hardy GESJ, Burgess TI. The challenge of understanding the origin, pathways and extent of fungal invasions: global populations of the Neofusicoccum parvum–N. ribis species complex. Divers Distrib. 2013;19(8):873–83. https://doi.org/10.1111/ddi.12030.

  122. Aguayo J, Elegbede F, Husson C, Saintonge F-X, Marçais B. Modeling climate impact on an emerging disease, the Phytophthora alni-induced alder decline. Glob Change Biol. 2014;20(10):3209–21. https://doi.org/10.1111/gcb.12601.

    Article  Google Scholar 

Download references

Acknowledgements

TP and MJW acknowledge the members of the Tree Protection Cooperative Programme (TPCP), South Africa, for financial support. DMR acknowledges support from the DSI-NRF Centre of Excellence for Invasion Biology and the Millennium Trust. JW thanks the South African Department of Forestry, Fisheries and the Environment (DFFE) for funding, noting that this publication does not necessarily represent the views or opinions of DFFE or its employees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trudy Paap.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Forest Pathology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paap, T., Wingfield, M.J., Burgess, T.I. et al. Invasion Frameworks: a Forest Pathogen Perspective. Curr Forestry Rep 8, 74–89 (2022). https://doi.org/10.1007/s40725-021-00157-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40725-021-00157-4

Keywords

Navigation