Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Asymptotics of the spectrum of the mixed boundary value problem for the Laplace operator in a thin spindle-shaped domain
HTML articles powered by AMS MathViewer

by S. A. Nazarov and J. Taskinen
Translated by: S. A. Nazarov
St. Petersburg Math. J. 33 (2022), 283-325
DOI: https://doi.org/10.1090/spmj/1701
Published electronically: March 4, 2022

Abstract:

The asymptotics is examined for solutions to the spectral problem for the Laplace operator in a $d$-dimensional thin, of diameter $O(h)$, spindle-shaped domain $\Omega ^h$ with the Dirichlet condition on small, of size $h\ll 1$, terminal zones $\Gamma ^h_\pm$ and the Neumann condition on the remaining part of the boundary $\partial \Omega ^h$. In the limit as $h\rightarrow +0$, an ordinary differential equation on the axis $(-1,1)\ni z$ of the spindle arises with a coefficient degenerating at the points $z=\pm 1$ and moreover, without any boundary condition because the requirement on the boundedness of eigenfunctions makes the limit spectral problem well-posed. Error estimates are derived for the one-dimensional model but in the case of $d=3$ it is necessary to construct boundary layers near the sets $\Gamma ^h_\pm$ and in the case of $d=2$ it is necessary to deal with selfadjoint extensions of the differential operator. The extension parameters depend linearly on $\ln h$ so that its eigenvalues are analytic functions in the variable $1/|\ln h|$. As a result, in all dimensions the one-dimensional model gets the power-law accuracy $O(h^{\delta _d})$ with an exponent $\delta _d>0$. First (the smallest) eigenvalues, positive in $\Omega ^h$ and null in $(-1,1)$, require individual treatment. Also, infinite asymptotic series are discussed, as well as the static problem (without the spectral parameter) and related shapes of thin domains.
References
  • O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Applied Mathematical Sciences, vol. 49, Springer-Verlag, New York, 1985. Translated from the Russian by Jack Lohwater [Arthur J. Lohwater]. MR 793735, DOI 10.1007/978-1-4757-4317-3
  • M. Sh. Birman and M. Z. Solomjak, Spectral theory of selfadjoint operators in Hilbert space, Mathematics and its Applications (Soviet Series), D. Reidel Publishing Co., Dordrecht, 1987. Translated from the 1980 Russian original by S. Khrushchëv and V. Peller. MR 1192782, DOI 10.1007/978-94-009-4586-9
  • M. Š. Birman and G. E. Skvorcov, On square summability of highest derivatives of the solution of the Dirichlet problem in a domain with piecewise smooth boundary, Izv. Vysš. Učebn. Zaved. Matematika 1962 (1962), no. 5 (30), 11–21 (Russian). MR 0145196
  • V. A. Kondrat′ev, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obšč. 16 (1967), 209–292 (Russian). MR 0226187
  • Sergey A. Nazarov and Boris A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Expositions in Mathematics, vol. 13, Walter de Gruyter & Co., Berlin, 1994. MR 1283387, DOI 10.1515/9783110848915.525
  • S. G. Mikhlin, Variational methods in mathematical physics, A Pergamon Press Book, The Macmillan Company, New York, 1964. Translated by T. Boddington; editorial introduction by L. I. G. Chambers. MR 0172493
  • Sergey A. Nazarov, Andrey S. Slutskij, and Jari Taskinen, Korn inequality for a thin rod with rounded ends, Math. Methods Appl. Sci. 37 (2014), no. 16, 2463–2483. MR 3271098, DOI 10.1002/mma.2990
  • Sergey A. Nazarov, Andrey S. Slutskij, and Jari Taskinen, Asymptotic analysis of an elastic rod with rounded ends, Math. Methods Appl. Sci. 43 (2020), no. 10, 6396–6415. MR 4112808, DOI 10.1002/mma.6380
  • S. A. Nazarov, Asymptotic theory of plates and rods. Dimension reduction and integral estimates, Nauch. Kniga, Novosibirsk, 2002. (Russian)
  • M. V. Keldyš, On certain cases of degeneration of equations of elliptic type on the boundry of a domain, Doklady Akad. Nauk SSSR (N.S.) 77 (1951), 181–183 (Russian). MR 0042031
  • O. A. Oleĭnik, On equations of elliptic type degenerating on the boundary of a region, Doklady Akad. Nauk SSSR (N.S.) 87 (1952), 885–888 (Russian). MR 0064982
  • M. I. Višik, Boundary problems for elliptic equations degenerating on the boundary of a region, Mat. Sb. (N.S.) 35(77) (1954), 513–568 (Russian). MR 0068705
  • J. Polking, A. Boggess, and D. Arnold, Differential equations with boundary value problems, Second ed., Pearson Prentice Hall, New Jersey, 2006.
  • M. I. Višik and L. A. Lyusternik, Regular degeneration and boundary layer for linear differential equations with small parameter, Uspehi Mat. Nauk (N.S.) 12 (1957), no. 5(77), 3–122 (Russian). MR 0096041
  • V. M. Babič and V. S. Buldyrev, The art of asymptotics, Vestnik Leningrad. Univ. 13 Mat. Meh. Astronom. vyp. 3 (1977), 5–12, 169 (Russian, with English summary). MR 0470374
  • Vladimir Maz′ya, Serguei Nazarov, and Boris Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. Vol. II, Operator Theory: Advances and Applications, vol. 112, Birkhäuser Verlag, Basel, 2000. Translated from the German by Plamenevskij. MR 1779978
  • A. M. Il′in, Matching of asymptotic expansions of solutions of boundary value problems, Translations of Mathematical Monographs, vol. 102, American Mathematical Society, Providence, RI, 1992. Translated from the Russian by V. Minachin [V. V. Minakhin]. MR 1182791, DOI 10.1090/mmono/102
  • Vladimir Kozlov, Vladimir Maz’ya, and Alexander Movchan, Asymptotic analysis of fields in multi-structures, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1999. Oxford Science Publications. MR 1860617
  • V. M. Babič and N. Y. Kirpičnikova, The boundary-layer method in diffraction problems, Springer Series in Electrophysics, vol. 3, Springer-Verlag, Berlin-New York, 1979. Translated from the Russian and with an introduction by Edward F. Kuester. MR 555574, DOI 10.1007/978-3-642-88391-0
  • Milton Van Dyke, Perturbation methods in fluid mechanics, Applied Mathematics and Mechanics, Vol. 8, Academic Press, New York-London, 1964. MR 0176702
  • S. A. Nazarov, Nonselfadjoint elliptic problems with the polynomial property in domains possessing cylindrical outlets to infinity, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 249 (1997), no. Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 29, 212–230, 316–317 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 101 (2000), no. 5, 3512–3522. MR 1698519, DOI 10.1007/BF02680148
  • S. A. Nazarov, Polynomial property of selfadjoint elliptic boundary value problems, and the algebraic description of their attributes, Uspekhi Mat. Nauk 54 (1999), no. 5(329), 77–142 (Russian); English transl., Russian Math. Surveys 54 (1999), no. 5, 947–1014. MR 1741662, DOI 10.1070/rm1999v054n05ABEH000204
  • V. A. Kozlov, V. G. Maz′ya, and J. Rossmann, Elliptic boundary value problems in domains with point singularities, Mathematical Surveys and Monographs, vol. 52, American Mathematical Society, Providence, RI, 1997. MR 1469972, DOI 10.1090/surv/052
  • S. A. Nazarov and B. A. Plamenevskiĭ, The Neumann problem for selfadjoint elliptic systems in a domain with a piecewise-smooth boundary, Trudy Leningrad. Mat. Obshch. 1 (1990), 174–211, 246–247 (Russian). MR 1104210
  • N. Kh. Arutyunyan, S. A. Nazarov, and B. A. Shoĭkhet, Estimates and asymptotic behavior of the stress-strained state of a three-dimensional body with a crack in elasticity and creep theory, Dokl. Akad. Nauk SSSR 266 (1982), no. 6, 1361–1366 (Russian). MR 681024
  • S. A. Nazarov and B. A. Shoĭkhet, Coercive estimates in weight spaces of solutions of problems of elasticity and creep theory in a region with a two-dimensional crack, Izv. Akad. Nauk Armyan. SSR Ser. Mekh. 36 (1983), no. 4, 12–25 (Russian, with English and Armenian summaries). MR 732373
  • J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth. MR 0350177
  • F. S. Rofe-Beketov, Selfadjoint extensions of differential operators in a space of vector-valued functions, Dokl. Akad. Nauk SSSR 184 (1969), 1034–1037 (Russian). MR 0244808
  • F. A. Berezin and L. D. Faddeev, Remark on the Schrödinger equation with singular potential, Dokl. Akad. Nauk SSSR 137 (1961), 1011–1014 (Russian). MR 0129309
  • B. S. Pavlov, The theory of extensions, and explicitly solvable models, Uspekhi Mat. Nauk 42 (1987), no. 6(258), 99–131, 247 (Russian). MR 933997
  • S. A. Nazarov, Selfadjoint extensions of the operator of the Dirichlet problem in weighted function spaces, Mat. Sb. (N.S.) 137(179) (1988), no. 2, 224–241, 271 (Russian); English transl., Math. USSR-Sb. 65 (1990), no. 1, 229–247. MR 971695, DOI 10.1070/SM1990v065n01ABEH001930
  • S. A. Nazarov, Asymptotic conditions at a point, selfadjoint extensions of operators, and the method of matched asymptotic expansions, Proceedings of the St. Petersburg Mathematical Society, Vol. V, Amer. Math. Soc. Transl. Ser. 2, vol. 193, Amer. Math. Soc., Providence, RI, 1999, pp. 77–125. MR 1736907, DOI 10.1090/trans2/193/05
  • Tosio Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR 0407617
  • Franz Rellich, Perturbation theory of eigenvalue problems, Gordon and Breach Science Publishers, New York-London-Paris, 1969. Assisted by J. Berkowitz; With a preface by Jacob T. Schwartz. MR 0240668
  • A. M. Il′in, A boundary value problem for an elliptic equation of second order in a domain with a narrow slit. II. Domain with a small opening, Mat. Sb. (N.S.) 103(145) (1977), no. 2, 265–284 (Russian). MR 0442460
  • I. V. Kamotski and V. G. Maz’ya, On the linear water wave problem in the presence of a critically submerged body, SIAM J. Math. Anal. 44 (2012), no. 6, 4222–4249. MR 3028557, DOI 10.1137/120868074
  • V. G. Maz′ya, S. A. Nazarov, and B. A. Plamenevskiĭ, Asymptotic expansions of eigenvalues of boundary value problems for the Laplace operator in domains with small openings, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), no. 2, 347–371 (Russian). MR 740795
  • Pier Domenico Lamberti and Massimo Lanza de Cristoforis, A real analyticity result for symmetric functions of the eigenvalues of a domain dependent Dirichlet problem for the Laplace operator, J. Nonlinear Convex Anal. 5 (2004), no. 1, 19–42. MR 2049054
  • Massimo Lanza de Cristoforis, Asymptotic behavior of the solutions of the Dirichlet problem for the Laplace operator in a domain with a small hole. A functional analytic approach, Analysis (Munich) 28 (2008), no. 1, 63–93. MR 2396403, DOI 10.1524/anly.2008.0903
  • Massimo Lanza de Cristoforis, Simple Neumann eigenvalues for the Laplace operator in a domain with a small hole. A functional analytic approach, Rev. Mat. Complut. 25 (2012), no. 2, 369–412. MR 2931418, DOI 10.1007/s13163-011-0081-8
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2020): 35P20
  • Retrieve articles in all journals with MSC (2020): 35P20
Bibliographic Information
  • S. A. Nazarov
  • Affiliation: St. Petersburg State University, Universitetskaya nab. 7–9, St. Petersburg 199034, Russia; and Institute for Problems in Mechanical Engineering of RAS, V.O., Bolshoj pr. 61, St. Petersburg 199178, Russia
  • MR Author ID: 196508
  • Email: srgnazarov@yahoo.co.uk
  • J. Taskinen
  • Affiliation: University of Helsinki, Department of Mathematics and Statistics, P.O.Box 68, 00014, Helsinki, Finland
  • MR Author ID: 170995
  • Email: jari.taskinen@helsinki.fi
  • Received by editor(s): April 14, 2020
  • Published electronically: March 4, 2022
  • Additional Notes: Supported by RFBR, grant no. 18-01-00325

  • Dedicated: Dedicated to Vasiliĭ Mikhaĭlovich Babich, who knows everything about boundary layers
  • © Copyright 2022 American Mathematical Society
  • Journal: St. Petersburg Math. J. 33 (2022), 283-325
  • MSC (2020): Primary 35P20
  • DOI: https://doi.org/10.1090/spmj/1701
  • MathSciNet review: 4445760