1932

Abstract

Our current view of how DNA-based genomes are efficiently and accurately replicated continues to evolve as new details emerge on the presence of ribonucleotides in DNA. Ribonucleotides are incorporated during eukaryotic DNA replication at rates that make them the most common noncanonical nucleotide placed into the nuclear genome, they are efficiently repaired, and their removal impacts genome integrity. This review focuses on three aspects of this subject: the incorporation of ribonucleotides into the eukaryotic nuclear genome during replication by B-family DNA replicases, how these ribonucleotides are removed, and the consequences of their presence or removal for genome stability and disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-032620-110354
2022-06-21
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/biochem/91/1/annurev-biochem-032620-110354.html?itemId=/content/journals/10.1146/annurev-biochem-032620-110354&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Cech TR. 2012. The RNA worlds in context. Cold Spring Harb. Perspect. Biol. 4:a006742
    [Google Scholar]
  2. 2.
    Crick F. 1970. Central dogma of molecular biology. Nature 227:561–63
    [Google Scholar]
  3. 3.
    Li Y, Breaker RR. 1999. Kinetics of RNA degradation by specific base catalysis of transesterification involving the 2′-hydroxyl group. J. Am. Chem. Soc. 121:5326–72
    [Google Scholar]
  4. 4.
    Egli M, Usman N, Rich A. 1993. Conformational influence of the ribose 2′-hydroxyl group: crystal structures of DNA–RNA chimeric duplexes. Biochemistry 32:3221–37
    [Google Scholar]
  5. 5.
    Jaishree TN, van der Marel GA, van Boom JH, Wang AH. 1993. Structural influence of RNA incorporation in DNA: quantitative nuclear magnetic resonance refinement of d(CG)r(CG)d(CG) and d(CG)r(C)d(TAGCG). Biochemistry 32:4903–11
    [Google Scholar]
  6. 6.
    Ban C, Ramakrishnan B, Sundaralingam M. 1994. A single 2′-hydroxyl group converts B-DNA to A-DNA: crystal structure of the DNA-RNA chimeric decamer duplex d(CCGGC)r(G)d(CCGG) with a novel intermolecular G·C base-paired quadruplet. J. Mol. Biol. 236:275–85
    [Google Scholar]
  7. 7.
    DeRose EF, Perera L, Murray MS, Kunkel TA, London RE. 2012. Solution structure of the Dickerson DNA dodecamer containing a single ribonucleotide. Biochemistry 51:2407–16
    [Google Scholar]
  8. 8.
    Nava GM, Grasso L, Sertic S, Pellicioli A, Muzi Falconi M, Lazzaro F 2020. One, no one, and one hundred thousand: the many forms of ribonucleotides in DNA. Int. J. Mol. Sci. 21:1706–29
    [Google Scholar]
  9. 9.
    Klein HL. 2017. Genome instabilities arising from ribonucleotides in DNA. DNA Repair 56:26–32
    [Google Scholar]
  10. 10.
    Cho JE, Jinks-Robertson S. 2017. Ribonucleotides and transcription-associated mutagenesis in yeast. J. Mol. Biol. 429:3156–67
    [Google Scholar]
  11. 11.
    Vaisman A, Woodgate R. 2018. Ribonucleotide discrimination by translesion synthesis DNA polymerases. Crit. Rev. Biochem. Mol. Biol. 53:382–402
    [Google Scholar]
  12. 12.
    Cerritelli SM, Crouch RJ. 2016. The balancing act of ribonucleotides in DNA. Trends Biochem. Sci. 41:434–45
    [Google Scholar]
  13. 13.
    Kellner V, Luke B. 2020. Molecular and physiological consequences of faulty eukaryotic ribonucleotide excision repair. EMBO J 39:e102309
    [Google Scholar]
  14. 14.
    Palancade B, Rothstein R. 2021. The ultimate (mis)match: when DNA meets RNA. Cells 10:1433–49
    [Google Scholar]
  15. 15.
    DeLucia AM, Grindley ND, Joyce CM. 2003. An error-prone family Y DNA polymerase (DinB homolog from Sulfolobus solfataricus) uses a “steric gate” residue for discrimination against ribonucleotides. Nucleic Acids Res. 31:4129–37
    [Google Scholar]
  16. 16.
    Bessman MJ, Kornberg A, Lehman IR, Simms ES. 1956. Enzymic synthesis of deoxyribonucleic acid. Biochim. Biophys. Acta 21:197–98
    [Google Scholar]
  17. 17.
    Astatke M, Ng K, Grindley ND, Joyce CM. 1998. A single side chain prevents Escherichia coli DNA polymerase I (Klenow fragment) from incorporating ribonucleotides. PNAS 95:3402–7
    [Google Scholar]
  18. 18.
    Brown JA, Suo Z. 2011. Unlocking the sugar “steric gate” of DNA polymerases. Biochemistry 50:1135–42
    [Google Scholar]
  19. 19.
    Nick McElhinny SA, Watts B, Kumar D, Watt DL, Lundström E-B et al. 2010. Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases. PNAS 107:4949–54
    [Google Scholar]
  20. 20.
    Traut TW. 1994. Physiological concentrations of purines and pyrimidines. Mol. Cell Biochem. 140:1–22
    [Google Scholar]
  21. 21.
    Clausen AR, Zhang S, Burgers PM, Lee MY, Kunkel TA. 2013. Ribonucleotide incorporation, proofreading and bypass by human DNA polymerase δ. DNA Repair 12:121–27
    [Google Scholar]
  22. 22.
    Goksenin AY, Zahurancik W, LeCompte KG, Taggart DJ, Suo Z, Pursell ZF. 2012. Human DNA polymerase ε is able to efficiently extend from multiple consecutive ribonucleotides. J. Biol. Chem. 287:42675–84
    [Google Scholar]
  23. 23.
    Wahl MC, Sundaralingam M. 2000. B-form to A-form conversion by a 3′-terminal ribose: crystal structure of the chimera d(CCACTAGTG)r(G). Nucleic Acids Res. 28:4356–63
    [Google Scholar]
  24. 24.
    Koh KD, Chiu HC, Riedo E, Storici F. 2015. Measuring the elasticity of ribonucleotide(s)-containing DNA molecules using AFM. Methods Mol. Biol. 1297:43–57
    [Google Scholar]
  25. 25.
    Chiu HC, Koh KD, Evich M, Lesiak AL, Germann MW et al. 2014. RNA intrusions change DNA elastic properties and structure. Nanoscale 6:10009–17
    [Google Scholar]
  26. 26.
    Fu I, Smith DJ, Broyde S. 2019. Rotational and translational positions determine the structural and dynamic impact of a single ribonucleotide incorporated in the nucleosome. DNA Repair 73:155–63
    [Google Scholar]
  27. 27.
    Rumbaugh JA, Murante RS, Shi S, Bambara RA. 1997. Creation and removal of embedded ribonucleotides in chromosomal DNA during mammalian Okazaki fragment processing. J. Biol. Chem. 272:22591–99
    [Google Scholar]
  28. 28.
    Randerath K, Reddy R, Danna TF, Watson WP, Crane AE, Randerath E. 1992. Formation of ribonucleotides in DNA modified by oxidative damage in vitro and in vivo. Characterization by 32P-postlabeling. Mutat. Res. 275:355–66
    [Google Scholar]
  29. 29.
    Hoitsma NM, Click TH, Agarwal PK, Freudenthal BD. 2021. Altered APE1 activity on abasic ribonucleotides is mediated by changes in the nucleoside sugar pucker. Comput. Struct. Biotechnol. J. 19:3293–302
    [Google Scholar]
  30. 30.
    Watt DL, Johansson E, Burgers PM, Kunkel TA. 2011. Replication of ribonucleotide-containing DNA templates by yeast replicative polymerases. DNA Repair 10:897–902
    [Google Scholar]
  31. 31.
    Williams JS, Clausen AR, Nick McElhinny SA, Watts BE, Johansson E, Kunkel TA 2012. Proofreading of ribonucleotides inserted into DNA by yeast DNA polymerase ε. DNA Repair 11:649–56
    [Google Scholar]
  32. 32.
    Lazzaro F, Novarina D, Amara F, Watt DL, Stone JE et al. 2012. RNase H and postreplication repair protect cells from ribonucleotides incorporated in DNA. Mol. Cell 45:99–110
    [Google Scholar]
  33. 33.
    Chabes A, Georgieva B, Domkin V, Zhao X, Rothstein R, Thelander L. 2003. Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell 112:391–401
    [Google Scholar]
  34. 34.
    Kong Z, Jia S, Chabes AL, Appelblad P, Lundmark R et al. 2018. Simultaneous determination of ribonucleoside and deoxyribonucleoside triphosphates in biological samples by hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry. Nucleic Acids Res 46:e66
    [Google Scholar]
  35. 35.
    Li Z, Zhang HX, Li Y, Lam CWK, Wang CY et al. 2019. Method for quantification of ribonucleotides and deoxyribonucleotides in human cells using (trimethylsilyl)diazomethane derivatization followed by liquid chromatography-tandem mass spectrometry. Anal. Chem. 91:1019–26
    [Google Scholar]
  36. 36.
    Williams LN, Marjavaara L, Knowels GM, Schultz EM, Fox EJ et al. 2015. dNTP pool levels modulate mutator phenotypes of error-prone DNA polymerase ε variants. PNAS 112:E2457–66
    [Google Scholar]
  37. 37.
    Watt DL, Buckland RJ, Lujan SA, Kunkel TA, Chabes A. 2016. Genome-wide analysis of the specificity and mechanisms of replication infidelity driven by imbalanced dNTP pools. Nucleic Acids Res. 44:1669–80
    [Google Scholar]
  38. 38.
    Kumar D, Abdulovic AL, Viberg J, Nilsson AK, Kunkel TA, Chabes A. 2011. Mechanisms of mutagenesis in vivo due to imbalanced dNTP pools. Nucleic Acids Res. 39:1360–71
    [Google Scholar]
  39. 39.
    Wanrooij PH, Tran P, Thompson LJ, Carvalho G, Sharma S et al. 2020. Elimination of rNMPs from mitochondrial DNA has no effect on its stability. PNAS 117:14306–13
    [Google Scholar]
  40. 40.
    Ferraro P, Franzolin E, Pontarin G, Reichard P, Bianchi V. 2010. Quantitation of cellular deoxynucleoside triphosphates. Nucleic Acids Res 38:e85
    [Google Scholar]
  41. 41.
    Mertz TM, Sharma S, Chabes A, Shcherbakova PV. 2015. Colon cancer-associated mutator DNA polymerase δ variant causes expansion of dNTP pools increasing its own infidelity. PNAS 112:E2467–76
    [Google Scholar]
  42. 42.
    Berglund AK, Navarrete C, Engqvist MK, Hoberg E, Szilagyi Z et al. 2017. Nucleotide pools dictate the identity and frequency of ribonucleotide incorporation in mitochondrial DNA. PLOS Genet 13:e1006628
    [Google Scholar]
  43. 43.
    Kreisel K, Engqvist MKM, Clausen AR. 2017. Simultaneous mapping and quantitation of ribonucleotides in human mitochondrial DNA. J. Vis. Exp. 129:e56551
    [Google Scholar]
  44. 44.
    Zhou ZX, Williams JS, Lujan SA, Kunkel TA. 2021. Ribonucleotide incorporation into DNA during DNA replication and its consequences. Crit. Rev. Biochem. Mol. Biol. 56:109–24
    [Google Scholar]
  45. 45.
    Nick McElhinny SA, Pavlov YI, Kunkel TA 2006. Evidence for extrinsic exonucleolytic proofreading. Cell Cycle 5:958–62
    [Google Scholar]
  46. 46.
    Pavlov YI, Frahm C, Nick McElhinny SA, Niimi A, Suzuki M, Kunkel TA 2006. Evidence that errors made by DNA polymerase α are corrected by DNA polymerase δ. Curr. Biol. 16:202–7
    [Google Scholar]
  47. 47.
    Bulock CR, Xing X, Shcherbakova PV. 2020. DNA polymerase δ proofreads errors made by DNA polymerase ε. PNAS 117:6035–41
    [Google Scholar]
  48. 48.
    Zhou ZX, Lujan SA, Burkholder AB, St Charles JA, Dahl J et al. 2021. How asymmetric DNA replication achieves symmetrical fidelity. Nat. Struct. Mol. Biol. 28:102028
    [Google Scholar]
  49. 49.
    Cerritelli SM, Crouch RJ. 2009. Ribonuclease H: the enzymes in eukaryotes. FEBS J 276:1494–505
    [Google Scholar]
  50. 50.
    Eder PS, Walder RY, Walder JA. 1993. Substrate specificity of human RNase H1 and its role in excision repair of ribose residues misincorporated in DNA. Biochimie 75:123–26
    [Google Scholar]
  51. 51.
    Rydberg B, Game J. 2002. Excision of misincorporated ribonucleotides in DNA by RNase H (type 2) and FEN-1 in cell-free extracts. PNAS 99:16654–59
    [Google Scholar]
  52. 52.
    Nick McElhinny SA, Kumar D, Clark AB, Watt DL, Watts BE et al. 2010. Genome instability due to ribonucleotide incorporation into DNA. Nat. Chem. Biol. 6:774–81
    [Google Scholar]
  53. 53.
    Sparks JL, Chon H, Cerritelli SM, Kunkel TA, Johansson E et al. 2012. RNase H2-initiated ribonucleotide excision repair. Mol. Cell 47:980–86
    [Google Scholar]
  54. 54.
    Ganai RA, Zhang XP, Heyer WD, Johansson E. 2016. Strand displacement synthesis by yeast DNA polymerase ε. Nucleic Acids Res. 44:8229–40
    [Google Scholar]
  55. 55.
    Williams JS, Tumbale PP, Arana ME, Rana JA, Williams RS, Kunkel TA. 2021. High-fidelity DNA ligation enforces accurate Okazaki fragment maturation during DNA replication. Nat. Commun. 12:482–93
    [Google Scholar]
  56. 56.
    Hyjek M, Figiel M, Nowotny M. 2019. RNases H: structure and mechanism. DNA Repair 84:102672
    [Google Scholar]
  57. 57.
    Uehara R, Cerritelli SM, Hasin N, Sakhuja K, London M et al. 2018. Two RNase H2 mutants with differential rNMP processing activity reveal a threshold of ribonucleotide tolerance for embryonic development. Cell Rep 25:1135–45.e5
    [Google Scholar]
  58. 58.
    Reijns MA, Rabe B, Rigby RE, Mill P, Astell KR et al. 2012. Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development. Cell 149:1008–22
    [Google Scholar]
  59. 59.
    Hiller B, Achleitner M, Glage S, Naumann R, Behrendt R, Roers A. 2012. Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity. J. Exp. Med. 209:1419–26
    [Google Scholar]
  60. 60.
    Cerritelli SM, Crouch RJ. 2019. RNase H2-RED carpets the path to eukaryotic RNase H2 functions. DNA Repair 84:102736
    [Google Scholar]
  61. 61.
    Williams JS, Smith DJ, Marjavaara L, Lujan SA, Chabes A, Kunkel TA. 2013. Topoisomerase 1-mediated removal of ribonucleotides from nascent leading-strand DNA. Mol. Cell 49:1010–15
    [Google Scholar]
  62. 62.
    Heider MR, Burkhart BW, Santangelo TJ, Gardner AF. 2017. Defining the RNaseH2 enzyme-initiated ribonucleotide excision repair pathway in Archaea. J. Biol. Chem. 292:8835–45
    [Google Scholar]
  63. 63.
    Kind B, Wolf C, Engel K, Rapp A, Cristina Cardoso M, Lee-Kirsch MA 2018. Single cell gel electrophoresis for the detection of genomic ribonucleotides. Methods Mol. Biol. 1672:311–18
    [Google Scholar]
  64. 64.
    Pursell ZF, Isoz I, Lundstrom EB, Johansson E, Kunkel TA 2007. Yeast DNA polymerase ε participates in leading-strand DNA replication. Science 317:127–30
    [Google Scholar]
  65. 65.
    Nick McElhinny SA, Gordenin DA, Stith CM, Burgers PM, Kunkel TA 2008. Division of labor at the eukaryotic replication fork. Mol. Cell 30:137–44
    [Google Scholar]
  66. 66.
    Nick McElhinny SA, Kissling GE, Kunkel TA 2010. Differential correction of lagging-strand replication errors made by DNA polymerases α and δ. PNAS 107:21070–75
    [Google Scholar]
  67. 67.
    Miyabe I, Kunkel TA, Carr AM. 2011. The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. PLOS Genet 7:e1002407
    [Google Scholar]
  68. 68.
    Larrea AA, Lujan SA, Nick McElhinny SA, Mieczkowski PA, Resnick MA et al. 2010. Genome-wide model for the normal eukaryotic DNA replication fork. PNAS 107:17674–79
    [Google Scholar]
  69. 69.
    Lujan SA, Clausen AR, Clark AB, MacAlpine HK, MacAlpine DM et al. 2014. Heterogeneous polymerase fidelity and mismatch repair bias genome variation and composition. Genome Res 24:1751–64
    [Google Scholar]
  70. 70.
    Clausen AR, Lujan SA, Burkholder AB, Orebaugh CD, Williams JS et al. 2015. Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation. Nat. Struct. Mol. Biol. 22:185–91
    [Google Scholar]
  71. 71.
    Daigaku Y, Keszthelyi A, Muller CA, Miyabe I, Brooks T et al. 2015. A global profile of replicative polymerase usage. Nat. Struct. Mol. Biol. 22:192–98
    [Google Scholar]
  72. 72.
    Koh KD, Balachander S, Hesselberth JR, Storici F. 2015. Ribose-seq: global mapping of ribonucleotides embedded in genomic DNA. Nat. Methods 12:251–57
    [Google Scholar]
  73. 73.
    Reijns MA, Kemp H, Ding J, de Proce SM, Jackson AP, Taylor MS. 2015. Lagging-strand replication shapes the mutational landscape of the genome. Nature 518:502–6
    [Google Scholar]
  74. 74.
    Williams JS, Clausen AR, Lujan SA, Marjavaara L, Clark AB et al. 2015. Evidence that processing of ribonucleotides in DNA by topoisomerase 1 is leading-strand specific. Nat. Struct. Mol. Biol. 22:291–97
    [Google Scholar]
  75. 75.
    Garbacz MA, Lujan SA, Burkholder AB, Cox PB, Wu Q et al. 2018. Evidence that DNA polymerase δ contributes to initiating leading strand DNA replication in Saccharomyces cerevisiae. Nat. Commun. 9:858–69
    [Google Scholar]
  76. 76.
    Zhou ZX, Lujan SA, Burkholder AB, Garbacz MA, Kunkel TA. 2019. Roles for DNA polymerase δ in initiating and terminating leading strand DNA replication. Nat. Commun. 10:3992
    [Google Scholar]
  77. 77.
    Langston LD, O'Donnell M. 2008. DNA polymerase δ is highly processive with proliferating cell nuclear antigen and undergoes collision release upon completing DNA. J. Biol. Chem. 283:29522–31
    [Google Scholar]
  78. 78.
    Aria V, Yeeles JTP. 2018. Mechanism of bidirectional leading-strand synthesis establishment at eukaryotic DNA replication origins. Mol. Cell 73:199–211
    [Google Scholar]
  79. 79.
    Vashee S, Cvetic C, Lu W, Simancek P, Kelly TJ, Walter JC. 2003. Sequence-independent DNA binding and replication initiation by the human origin recognition complex. Genes Dev. 17:1894–908
    [Google Scholar]
  80. 80.
    Dai J, Chuang RY, Kelly TJ. 2005. DNA replication origins in the Schizosaccharomyces pombe genome. PNAS 102:337–42
    [Google Scholar]
  81. 81.
    Xu J, Yanagisawa Y, Tsankov AM, Hart C, Aoki K et al. 2012. Genome-wide identification and characterization of replication origins by deep sequencing. Genome Biol 13:R27
    [Google Scholar]
  82. 82.
    Tubbs A, Sridharan S, van Wietmarschen N, Maman Y, Callen E et al. 2018. Dual roles of poly(dA:dT) tracts in replication initiation and fork collapse. Cell 174:1127–42.e19
    [Google Scholar]
  83. 83.
    Maga G, Villani G, Tillement V, Stucki M, Locatelli GA et al. 2001. Okazaki fragment processing: modulation of the strand displacement activity of DNA polymerase δ by the concerted action of replication protein A, proliferating cell nuclear antigen, and flap endonuclease-1. PNAS 98:14298–303
    [Google Scholar]
  84. 84.
    Murante RS, Henricksen LA, Bambara RA. 1998. Junction ribonuclease: an activity in Okazaki fragment processing. PNAS 95:2244–49
    [Google Scholar]
  85. 85.
    Balachander S, Gombolay AL, Yang T, Xu P, Newnam G et al. 2020. Ribonucleotide incorporation in yeast genomic DNA shows preference for cytosine and guanosine preceded by deoxyadenosine. Nat. Commun. 11:2447
    [Google Scholar]
  86. 86.
    Kramara J, Osia B, Malkova A. 2018. Break-induced replication: the where, the why, and the how. Trends Genet 34:518–31
    [Google Scholar]
  87. 87.
    Donnianni RA, Zhou ZX, Lujan SA, Al-Zain A, Garcia V et al. 2019. DNA polymerase delta synthesizes both strands during break-induced replication. Mol. Cell 76:371–81.e4
    [Google Scholar]
  88. 88.
    Naiman K, Campillo-Funollet E, Watson AT, Budden A, Miyabe I, Carr AM. 2021. Replication dynamics of recombination-dependent replication forks. Nat. Commun. 12:923
    [Google Scholar]
  89. 89.
    Sekiguchi J, Shuman S. 1997. Site-specific ribonuclease activity of eukaryotic DNA topoisomerase I. Mol. Cell 1:89–97
    [Google Scholar]
  90. 90.
    Pommier Y, Sun Y, Huang SN, Nitiss JL. 2016. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell Biol. 17:703–21
    [Google Scholar]
  91. 91.
    Kim N, Huang SN, Williams JS, Li YC, Clark AB et al. 2011. Mutagenic processing of ribonucleotides in DNA by yeast topoisomerase I. Science 332:1561–64
    [Google Scholar]
  92. 92.
    Malfatti MC, Balachander S, Antoniali G, Koh KD, Saint-Pierre C et al. 2017. Abasic and oxidized ribonucleotides embedded in DNA are processed by human APE1 and not by RNase H2. Nucleic Acids Res. 45:11193–212
    [Google Scholar]
  93. 93.
    Riva V, Garbelli A, Casiraghi F, Arena F, Trivisani CI et al. 2020. Novel alternative ribonucleotide excision repair pathways in human cells by DDX3X and specialized DNA polymerases. Nucleic Acids Res 48:11551–65
    [Google Scholar]
  94. 94.
    Potenski CJ, Niu H, Sung P, Klein HL 2014. Avoidance of ribonucleotide-induced mutations by RNase H2 and Srs2-Exo1 mechanisms. Nature 511:251–54
    [Google Scholar]
  95. 95.
    Williams JS, Lujan SA, Zhou ZX, Burkholder AB, Clark AB et al. 2019. Genome-wide mutagenesis resulting from topoisomerase 1-processing of unrepaired ribonucleotides in DNA. DNA Repair 84:102641
    [Google Scholar]
  96. 96.
    Aguilera A, Klein HL. 1988. Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations. Genetics 119:779–90
    [Google Scholar]
  97. 97.
    Conover HN, Lujan SA, Chapman MJ, Cornelio DA, Sharif R et al. 2015. Stimulation of chromosomal rearrangements by ribonucleotides. Genetics 201:951–61
    [Google Scholar]
  98. 98.
    O'Connell K, Jinks-Robertson S, Petes TD. 2015. Elevated genome-wide instability in yeast mutants lacking RNase H activity. Genetics 201:963–75
    [Google Scholar]
  99. 99.
    Allen-Soltero S, Martinez SL, Putnam CD, Kolodner RD. 2014. A Saccharomyces cerevisiae RNase H2 interaction network functions to suppress genome instability. Mol. Cell. Biol. 34:1521–34
    [Google Scholar]
  100. 100.
    Huang SN, Williams JS, Arana ME, Kunkel TA, Pommier Y. 2017. Topoisomerase I-mediated cleavage at unrepaired ribonucleotides generates DNA double-strand breaks. EMBO J 36:361–73
    [Google Scholar]
  101. 101.
    Diaz-Talavera A, Calvo PA, Gonzalez-Acosta D, Diaz M, Sastre-Moreno G et al. 2019. A cancer-associated point mutation disables the steric gate of human PrimPol. Sci. Rep. 9:1121
    [Google Scholar]
  102. 102.
    Makarova AV, Nick McElhinny SA, Watts BE, Kunkel TA, Burgers PM 2014. Ribonucleotide incorporation by yeast DNA polymerase ζ. DNA Repair 18:63–67
    [Google Scholar]
  103. 103.
    Wanrooij PH, Chabes A. 2019. Ribonucleotides in mitochondrial DNA. FEBS Lett 593:1554–65
    [Google Scholar]
  104. 104.
    Wanrooij PH, Engqvist MKM, Forslund JME, Navarrete C, Nilsson AK et al. 2017. Ribonucleotides incorporated by the yeast mitochondrial DNA polymerase are not repaired. PNAS 114:12466–71
    [Google Scholar]
  105. 105.
    Dalgaard JZ. 2012. Causes and consequences of ribonucleotide incorporation into nuclear DNA. Trends Genet 28:592–97
    [Google Scholar]
  106. 106.
    Vengrova S, Dalgaard JZ. 2004. RNase-sensitive DNA modification(s) initiates S. pombe mating-type switching. Genes Dev. 18:794–804
    [Google Scholar]
  107. 107.
    Vengrova S, Dalgaard JZ. 2006. The wild-type Schizosaccharomyces pombe mat1 imprint consists of two ribonucleotides. EMBO Rep. 7:59–65
    [Google Scholar]
  108. 108.
    Sayrac S, Vengrova S, Godfrey EL, Dalgaard JZ 2011. Identification of a novel type of spacer element required for imprinting in fission yeast. PLOS Genet 7:e1001328
    [Google Scholar]
  109. 109.
    Hovatter KR, Martinson HG. 1987. Ribonucleotide-induced helical alteration in DNA prevents nucleosome formation. PNAS 84:1162–66
    [Google Scholar]
  110. 110.
    Dunn K, Griffith JD. 1980. The presence of RNA in a double helix inhibits its interaction with histone protein. Nucleic Acids Res. 8:555–66
    [Google Scholar]
  111. 111.
    Cai Y, Geacintov NE, Broyde S. 2014. Ribonucleotides as nucleotide excision repair substrates. DNA Repair 13:55–60
    [Google Scholar]
  112. 112.
    Ren M, Cheng Y, Duan Q, Zhou C. 2019. Transesterification reaction and the repair of embedded ribonucleotides in DNA are suppressed upon the assembly of DNA into nucleosome core particles. Chem. Res. Toxicol. 32:926–34
    [Google Scholar]
  113. 113.
    Nick McElhinny SA, Ramsden DA 2003. Polymerase mu is a DNA-directed DNA/RNA polymerase. Mol. Cell. Biol. 23:2309–15
    [Google Scholar]
  114. 114.
    Ruiz JF, Juarez R, Garcia-Diaz M, Terrados G, Picher AJ et al. 2003. Lack of sugar discrimination by human Pol μ requires a single glycine residue. Nucleic Acids Res 31:4441–49
    [Google Scholar]
  115. 115.
    Boule JB, Rougeon F, Papanicolaou C. 2001. Terminal deoxynucleotidyl transferase indiscriminately incorporates ribonucleotides and deoxyribonucleotides. J. Biol. Chem. 276:31388–93
    [Google Scholar]
  116. 116.
    Pryor JM, Conlin MP, Carvajal-Garcia J, Luedeman ME, Luthman AJ et al. 2018. Ribonucleotide incorporation enables repair of chromosome breaks by nonhomologous end joining. Science 361:1126–29
    [Google Scholar]
  117. 117.
    Kunkel TA, Erie DA. 2015. Eukaryotic mismatch repair in relation to DNA replication. Annu. Rev. Genet. 49:291–313
    [Google Scholar]
  118. 118.
    Lujan SA, Williams JS, Clausen AR, Clark AB, Kunkel TA. 2013. Ribonucleotides are signals for mismatch repair of leading-strand replication errors. Mol. Cell 50:437–43
    [Google Scholar]
  119. 119.
    Ghodgaonkar MM, Lazzaro F, Olivera-Pimentel M, Artola-Boran M, Cejka P et al. 2013. Ribonucleotides misincorporated into DNA act as strand-discrimination signals in eukaryotic mismatch repair. Mol. Cell 50:323–32
    [Google Scholar]
  120. 120.
    Shen Y, Koh KD, Weiss B, Storici F. 2012. Mispaired rNMPs in DNA are mutagenic and are targets of mismatch repair and RNases H. Nat. Struct. Mol. Biol. 19:98–104
    [Google Scholar]
  121. 121.
    Rice G, Patrick T, Parmar R, Taylor CF, Aeby A et al. 2007. Clinical and molecular phenotype of Aicardi-Goutieres syndrome. Am. J. Hum. Genet. 81:713–25
    [Google Scholar]
  122. 122.
    Potenski CJ, Epshtein A, Bianco C, Klein HL. 2019. Genome instability consequences of RNase H2 Aicardi-Goutieres syndrome alleles. DNA Repair 84:102614
    [Google Scholar]
  123. 123.
    Pokatayev V, Hasin N, Chon H, Cerritelli SM, Sakhuja K et al. 2016. RNase H2 catalytic core Aicardi-Goutieres syndrome-related mutant invokes cGAS-STING innate immune-sensing pathway in mice. J. Exp. Med. 213:329–36
    [Google Scholar]
  124. 124.
    Crow YJ, Leitch A, Hayward BE, Garner A, Parmar R et al. 2006. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection. Nat. Genet. 38:910–16
    [Google Scholar]
  125. 125.
    Chon H, Sparks JL, Rychlik M, Nowotny M, Burgers PM et al. 2013. RNase H2 roles in genome integrity revealed by unlinking its activities. Nucleic Acids Res. 41:3130–43
    [Google Scholar]
  126. 126.
    Nishimura T, Baba M, Ogawa S, Kojima K, Takita T et al. 2019. Characterization of six recombinant human RNase H2 bearing Aicardi-Goutieres syndrome causing mutations. J. Biochem. 166:537–45
    [Google Scholar]
  127. 127.
    Gunther C, Kind B, Reijns MA, Berndt N, Martinez-Bueno M et al. 2015. Defective removal of ribonucleotides from DNA promotes systemic autoimmunity. J. Clin. Investig. 125:413–24
    [Google Scholar]
  128. 128.
    Moreira MC, Barbot C, Tachi N, Kozuka N, Uchida E et al. 2001. The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nat. Genet. 29:189–93
    [Google Scholar]
  129. 129.
    Rass U, Ahel I, West SC. 2007. Actions of aprataxin in multiple DNA repair pathways. J. Biol. Chem. 282:9469–74
    [Google Scholar]
  130. 130.
    Ahel I, Rass U, El-Khamisy SF, Katyal S, Clements PM et al. 2006. The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates. Nature 443:713–16
    [Google Scholar]
  131. 131.
    Tumbale P, Williams JS, Schellenberg MJ, Kunkel TA, Williams RS. 2014. Aprataxin resolves adenylated RNA–DNA junctions to maintain genome integrity. Nature 506:111–15
    [Google Scholar]
  132. 132.
    Church DN, Briggs SE, Palles C, Domingo E, Kearsey SJ et al. 2013. DNA polymerase ε and δ exonuclease domain mutations in endometrial cancer. Hum. Mol. Genet. 22:2820–28
    [Google Scholar]
  133. 133.
    Yoshida R, Miyashita K, Inoue M, Shimamoto A, Yan Z et al. 2011. Concurrent genetic alterations in DNA polymerase proofreading and mismatch repair in human colorectal cancer. Eur. J. Hum. Genet. 19:320–25
    [Google Scholar]
  134. 134.
    Palles C, Cazier JB, Howarth KM, Domingo E, Jones AM et al. 2013. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat. Genet. 45:136–44
    [Google Scholar]
  135. 135.
    Aden K, Bartsch K, Dahl J, Reijns MAM, Esser D et al. 2019. Epithelial RNase H2 maintains genome integrity and prevents intestinal tumorigenesis in mice. Gastroenterology 156:145–59.e19
    [Google Scholar]
  136. 136.
    Hiller B, Hoppe A, Haase C, Hiller C, Schubert N et al. 2018. Ribonucleotide excision repair is essential to prevent squamous cell carcinoma of the skin. Cancer Res 78:5917–26
    [Google Scholar]
  137. 137.
    Zimmermann M, Murina O, Reijns MAM, Agathanggelou A, Challis R et al. 2018. CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions. Nature 559:285–89
    [Google Scholar]
  138. 138.
    Wang C, Wang G, Feng X, Shepherd P, Zhang J et al. 2019. Genome-wide CRISPR screens reveal synthetic lethality of RNASEH2 deficiency and ATR inhibition. Oncogene 38:2451–63
    [Google Scholar]
  139. 139.
    Alvarez-Quilon A, Wojtaszek JL, Mathieu MC, Patel T, Appel CD et al. 2020. Endogenous DNA 3′ blocks are vulnerabilities for BRCA1 and BRCA2 deficiency and are reversed by the APE2 nuclease. Mol. Cell 78:1152–65.e8
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-032620-110354
Loading
/content/journals/10.1146/annurev-biochem-032620-110354
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error