1932

Abstract

Mitogen-activated protein kinase (MAPK)-activated protein kinases (MAPKAPKs) are defined by their exclusive activation by MAPKs. They can be activated by classical and atypical MAPKs that have been stimulated by mitogens and various stresses. Genetic deletions of MAPKAPKs and availability of highly specific small-molecule inhibitors have continuously increased our functional understanding of these kinases. MAPKAPKs cooperate in the regulation of gene expression at the level of transcription; RNA processing, export, and stability; and protein synthesis. The diversity of stimuli for MAPK activation, the crosstalk between the different MAPKs and MAPKAPKs, and the specific substrate pattern of MAPKAPKs orchestrate immediate-early and inflammatory responses in space and time and ensure proper control of cell growth, differentiation, and cell behavior. Hence, MAPKAPKs are promising targets for cancer therapy and treatments for conditions of acute and chronic inflammation, such as cytokine storms and rheumatoid arthritis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-081720-114505
2022-06-21
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/biochem/91/1/annurev-biochem-081720-114505.html?itemId=/content/journals/10.1146/annurev-biochem-081720-114505&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Huntwork-Rodriguez S, Wang B, Watkins T, Ghosh AS, Pozniak CD et al. 2013. JNK-mediated phosphorylation of DLK suppresses its ubiquitination to promote neuronal apoptosis. J. Cell Biol. 202:5747–63
    [Google Scholar]
  2. 2.
    Rouse J, Cohen P, Trigon S, Morange M, Alonso-Llamazares A et al. 1994. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78:61027–37
    [Google Scholar]
  3. 3.
    Freshney NW, Rawlinson L, Guesdon F, Jones E, Cowley S et al. 1994. Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell 78:61039–49
    [Google Scholar]
  4. 4.
    Engel K, Kotlyarov A, Gaestel M. 1998. Leptomycin B-sensitive nuclear export of MAPKAP kinase 2 is regulated by phosphorylation. EMBO J 17:123363–71
    [Google Scholar]
  5. 5.
    Ben-Levy R, Hooper S, Wilson R, Paterson HF, Marshall CJ. 1998. Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2. Curr. Biol. 8:191049–57
    [Google Scholar]
  6. 6.
    Zakowski V, Keramas G, Kilian K, Rapp UR, Ludwig S 2004. Mitogen-activated 3p kinase is active in the nucleus. Exp. Cell Res. 299:1101–9
    [Google Scholar]
  7. 7.
    Gaestel M. 2006. MAPKAP kinases—MKs—two's company, three's a crowd. Nat. Rev. Mol. Cell Biol. 7:2120–30
    [Google Scholar]
  8. 8.
    Cargnello M, Roux PP. 2011. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 75:150–83
    [Google Scholar]
  9. 9.
    Kotlyarov A, Neininger A, Schubert C, Eckert R, Birchmeier C et al. 1999. MAPKAP kinase 2 is essential for LPS-induced TNF-α biosynthesis. Nat. Cell Biol. 1:294–97
    [Google Scholar]
  10. 10.
    Neininger A, Thielemann H, Gaestel M. 2001. FRET-based detection of different conformations of MK2. EMBO Rep 2:8703–8
    [Google Scholar]
  11. 11.
    Gutierrez-Prat N, Cubillos-Rojas M, Cánovas B, Kuzmanic A, Gupta J et al. 2021. MK2 degradation as a sensor of signal intensity that controls stress-induced cell fate. PNAS 118:29e2024562118
    [Google Scholar]
  12. 12.
    Stokoe D, Campbell DG, Nakielny S, Hidaka H, Leevers SJ et al. 1992. MAPKAP kinase-2; a novel protein kinase activated by mitogen-activated protein kinase. EMBO J 11:113985–94
    [Google Scholar]
  13. 13.
    Cano E, Doza YN, Ben-Levy R, Cohen P, Mahadevan LC. 1996. Identification of anisomycin-activated kinases p45 and p55 in murine cells as MAPKAP kinase-2. Oncogene 12:4805–12
    [Google Scholar]
  14. 14.
    Trulley P, Snieckute G, Bekker-Jensen D, Menon MB, Freund R et al. 2019. Alternative translation initiation generates a functionally distinct isoform of the stress-activated protein kinase MK2. Cell Rep 27:102859–70.e6Elucidation of the structural basis for the two enigmatic isoforms of MK2.
    [Google Scholar]
  15. 15.
    Ronkina N, Kotlyarov A, Dittrich-Breiholz O, Kracht M, Hitti E et al. 2007. The mitogen-activated protein kinase (MAPK)-activated protein kinases MK2 and MK3 cooperate in stimulation of tumor necrosis factor biosynthesis and stabilization of p38 MAPK. Mol. Cell. Biol. 27:1170–81
    [Google Scholar]
  16. 16.
    Ehlting C, Rex J, Albrecht U, Deenen R, Tiedje C et al. 2019. Cooperative and distinct functions of MK2 and MK3 in the regulation of the macrophage transcriptional response to lipopolysaccharide. Sci. Rep. 9:111021
    [Google Scholar]
  17. 17.
    Ba M, Rawat S, Lao R, Grous M, Salmon M et al. 2018. Differential regulation of cytokine and chemokine expression by MK2 and MK3 in airway smooth muscle cells. Pulm. Pharmacol. Ther. 53:12–19
    [Google Scholar]
  18. 18.
    Guess AJ, Ayoob R, Chanley M, Manley J, Cajaiba MM et al. 2013. Crucial roles of the protein kinases MK2 and MK3 in a mouse model of glomerulonephritis. PLOS ONE 8:1e54239
    [Google Scholar]
  19. 19.
    Meunier I, Lenaers G, Bocquet B, Baudoin C, Piro-Megy C et al. 2016. A dominant mutation in MAPKAPK3, an actor of p38 signaling pathway, causes a new retinal dystrophy involving Bruch's membrane and retinal pigment epithelium. Hum. Mol. Genet. 25:5916–26
    [Google Scholar]
  20. 20.
    Haar ET, Prabhakar P, Liu X, Lepre C. 2007. Crystal structure of the p38α-MAPKAP kinase 2 heterodimer. J. Biol. Chem. 282:139733–39
    [Google Scholar]
  21. 21.
    White A, Pargellis CA, Studts JM, Werneburg BG, Farmer BT. 2007. Molecular basis of MAPK-activated protein kinase 2:p38 assembly. PNAS 104:156353–58
    [Google Scholar]
  22. 22.
    Garai A, Zeke A, Gogl G, Toro I, Fordos F et al. 2012. Specificity of linear motifs that bind to a common mitogen-activated protein kinase docking groove. Sci. Signal. 5:245ra74
    [Google Scholar]
  23. 23.
    Gaestel M. 2015. MAPK-activated protein kinases (MKs): novel insights and challenges. Front. Cell Dev. Biol. 3:88
    [Google Scholar]
  24. 24.
    Alexa A, Gógl G, Glatz G, Garai Á, Zeke A et al. 2015. Structural assembly of the signaling competent ERK2-RSK1 heterodimeric protein kinase complex. PNAS 112:92711–16
    [Google Scholar]
  25. 25.
    Sok P, Gógl G, Kumar GS, Alexa A, Singh N et al. 2020. MAP kinase-mediated activation of RSK1 and MK2 substrate kinases. Structure 28:101101–1113.e5Demonstration of productive changes in the structure of the p38–MK2 complex during activation.
    [Google Scholar]
  26. 26.
    Cumming JG, Debreczeni , Edfeldt F, Evertsson E, Harrison M et al. 2015. Discovery and characterization of MAPK-activated protein kinase-2 prevention of activation inhibitors. J. Med. Chem. 58:1278–93
    [Google Scholar]
  27. 27.
    Gaestel M. 2013. What goes up must come down: molecular basis of MAPKAP kinase 2/3-dependent regulation of the inflammatory response and its inhibition. Biol. Chem. 394:101301–15
    [Google Scholar]
  28. 28.
    Davidson W, Frego L, Peet GW, Kroe RR, Labadia ME et al. 2004. Discovery and characterization of a substrate selective p38α inhibitor. Biochemistry 43:3711658–71
    [Google Scholar]
  29. 29.
    Wang C, Hockerman S, Jacobsen EJ, Alippe Y, Selness SR et al. 2018. Selective inhibition of the p38α MAPK-MK2 axis inhibits inflammatory cues including inflammasome priming signals. J. Exp. Med. 215:51315–25A proof of principle for the selective action of the prevention of activation p38–MK2 inhibitor in vivo.
    [Google Scholar]
  30. 30.
    Strasser SD, Ghazi PC, Starchenko A, Boukhali M, Edwards A et al. 2019. Substrate-based kinase activity inference identifies MK2 as driver of colitis. Integr. Biol. 11:7301–14
    [Google Scholar]
  31. 31.
    Long W, Foulds CE, Qin J, Liu J, Ding C et al. 2012. ERK3 signals through SRC-3 coactivator to promote human lung cancer cell invasion. J. Clin. Invest. 122:51869–80
    [Google Scholar]
  32. 32.
    Shrestha A, Bruckmueller H, Kildalsen H, Kaur G, Gaestel M et al. 2020. Phosphorylation of steroid receptor coactivator-3 (SRC-3) at serine 857 is regulated by the p38MAPK-MK2 axis and affects NF-κB-mediated transcription. Sci. Rep. 10:111388
    [Google Scholar]
  33. 33.
    Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G. 1999. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 10:3387–98
    [Google Scholar]
  34. 34.
    Neininger A, Kontoyiannis D, Kotlyarov A, Winzen R, Eckert R et al. 2002. MK2 targets AU-rich elements and regulates biosynthesis of tumor necrosis factor and interleukin-6 independently at different post-transcriptional levels. J. Biol. Chem. 277:53065–68
    [Google Scholar]
  35. 35.
    Carballo E, Lai WS, Blackshear PJ. 1998. Feedback inhibition of macrophage tumor necrosis factor-α production by tristetraprolin. Science 281:53791001–5
    [Google Scholar]
  36. 36.
    Chrestensen CA, Schroeder MJ, Shabanowitz J, Hunt DF, Pelo JW et al. 2004. MAPKAP kinase 2 phosphorylates tristetraprolin on in vivo sites including Ser178, a site required for 14-3-3 binding. J. Biol. Chem. 279:1110176–84
    [Google Scholar]
  37. 37.
    Hitti E, Iakovleva T, Brook M, Deppenmeier S, Gruber AD et al. 2006. Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Mol. Cell. Biol. 26:62399–407
    [Google Scholar]
  38. 38.
    Stoecklin G, Stubbs T, Kedersha N, Wax S, Rigby WFC et al. 2004. MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J 23:61313–24
    [Google Scholar]
  39. 39.
    Clement SL, Scheckel C, Stoecklin G, Lykke-Andersen J. 2011. Phosphorylation of tristetraprolin by MK2 impairs AU-rich element mRNA decay by preventing deadenylase recruitment. Mol. Cell. Biol. 31:2256–66
    [Google Scholar]
  40. 40.
    Marchese FP, Aubareda A, Tudor C, Saklatvala J, Clark AR, Dean JLE. 2010. MAPKAP kinase 2 blocks tristetraprolin-directed mRNA decay by inhibiting CAF1 deadenylase recruitment. J. Biol. Chem. 285:3627590–600
    [Google Scholar]
  41. 41.
    Tollenaere MAX, Tiedje C, Rasmussen S, Nielsen JC, Vind AC et al. 2019. GIGYF1/2-driven cooperation between ZNF598 and TTP in posttranscriptional regulation of inflammatory signaling. Cell Rep 26:133511–21.e4
    [Google Scholar]
  42. 42.
    O'Neil JD, Ross EA, Ridley ML, Ding Q, Tang T et al. 2017. Gain-of-function mutation of tristetraprolin impairs negative feedback control of macrophages in vitro yet has overwhelmingly anti-inflammatory consequences in vivo. Mol. Cell. Biol. 37:11e00536–16
    [Google Scholar]
  43. 43.
    Ronkina N, Shushakova N, Tiedje C, Yakovleva T, Tollenaere MAX et al. 2019. The role of TTP phosphorylation in the regulation of inflammatory cytokine production by MK2/3. J. Immunol. 203:8ji1801221Dissection of the role of different TTP phosphorylations in innate immunity using complex mouse genetics.
    [Google Scholar]
  44. 44.
    Fabian MR, Frank F, Rouya C, Siddiqui N, Lai WS et al. 2013. Structural basis for the recruitment of the human CCR4-NOT deadenylase complex by tristetraprolin. Nat. Struct. Mol. Biol. 20:6735–39
    [Google Scholar]
  45. 45.
    Brooks SA, Connolly JE, Rigby WFC. 2004. The role of mRNA turnover in the regulation of tristetraprolin expression: evidence for an extracellular signal-regulated kinase-specific, AU-rich element–dependent, autoregulatory pathway. J. Immunol. 172:127263–71
    [Google Scholar]
  46. 46.
    Tchen CR, Brook M, Saklatvala J, Clark AR. 2004. The stability of tristetraprolin mRNA is regulated by mitogen-activated protein kinase p38 and by tristetraprolin itself. J. Biol. Chem. 279:3132393–400
    [Google Scholar]
  47. 47.
    Ronkina N, Menon MB, Schwermann J, Arthur JSC, Legault H et al. 2011. Stress induced gene expression: a direct role for MAPKAP kinases in transcriptional activation of immediate early genes. Nucleic Acids Res 39:72503–18
    [Google Scholar]
  48. 48.
    Lykke-Andersen J, Wagner E. 2005. Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev 19:3351–61
    [Google Scholar]
  49. 49.
    Maitra S, Chou C-F, Luber CA, Lee K-Y, Mann M, Chen C-Y. 2008. The AU-rich element mRNA decay-promoting activity of BRF1 is regulated by mitogen-activated protein kinase-activated protein kinase 2. RNA 14:5950–59
    [Google Scholar]
  50. 50.
    Pinto SM, Nirujogi RS, Rojas PL, Patil AH, Manda SS et al. 2015. Quantitative phosphoproteomic analysis of IL-33-mediated signaling. Proteomics 15:2–3532–44
    [Google Scholar]
  51. 51.
    McCarthy PC, Phair IR, Greger C, Pardali K, McGuire VA et al. 2019. IL-33 regulates cytokine production and neutrophil recruitment via the p38 MAPK-activated kinases MK2/3. Immunol. Cell Biol. 97:154–71
    [Google Scholar]
  52. 52.
    Göpfert C, Andreas N, Weber F, Häfner N, Yakovleva T et al. 2018. The p38-MK2/3 module is critical for IL-33–induced signaling and cytokine production in dendritic cells. J. Immunol. 200:31198–206
    [Google Scholar]
  53. 53.
    Nakajima S, Ishimaru K, Kobayashi A, Yu G, Nakamura Y et al. 2019. Resveratrol inhibits IL-33-mediated mast cell activation by targeting the MK2/3-PI3K/Akt axis. Sci. Rep. 9:118423
    [Google Scholar]
  54. 54.
    Petrova T, Pesic J, Pardali K, Gaestel M, Arthur JSC. 2020. p38 MAPK signalling regulates cytokine production in IL-33 stimulated Type 2 Innate Lymphoid cells. Sci. Rep. 10:1 3479.
    [Google Scholar]
  55. 55.
    McGuire VA, Gray A, Monk CE, Santos SG, Lee K et al. 2013. Cross talk between the Akt and p38α pathways in macrophages downstream of Toll-like receptor signaling. Mol. Cell. Biol. 33:214152–65
    [Google Scholar]
  56. 56.
    Menon MB, Gropengießer J, Fischer J, Novikova L, Deuretzbacher A et al. 2017. p38MAPK/MK2-dependent phosphorylation controls cytotoxic RIPK1 signalling in inflammation and infection. Nat. Cell Biol. 19:101248–59
    [Google Scholar]
  57. 57.
    Dondelinger Y, Delanghe T, Rojas-Rivera D, Priem D, Delvaeye T et al. 2017. MK2 phosphorylation of RIPK1 regulates TNF-mediated cell death. Nat. Cell Biol. 19:101237–47
    [Google Scholar]
  58. 58.
    Ariana A, Alturki NA, Hajjar S, Stumpo DJ, Tiedje C et al. 2020. Tristetraprolin regulates necroptosis during tonic Toll-like receptor 4 (TLR4) signaling in murine macrophages. J. Biol. Chem. 295:144661–72
    [Google Scholar]
  59. 59.
    McCormick C, Ganem D. 2005. The kaposin B protein of KSHV activates the p38/MK2 pathway and stabilizes cytokine mRNAs. Science 307:5710739–41
    [Google Scholar]
  60. 60.
    King CA. 2013. Kaposi's sarcoma-associated herpesvirus kaposin B induces unique monophosphorylation of STAT3 at serine 727 and MK2-mediated inactivation of the STAT3 transcriptional repressor TRIM28. J. Virol. 87:158779–91
    [Google Scholar]
  61. 61.
    Luig C, Köther K, Dudek SE, Gaestel M, Hiscott J et al. 2010. MAP kinase-activated protein kinases 2 and 3 are required for influenza A virus propagation and act via inhibition of PKR. FASEB J. 24:104068–77
    [Google Scholar]
  62. 62.
    Wiredja DD, Tabler CO, Schlatzer DM, Li M, Chance MR, Tilton JC. 2018. Global phosphoproteomics of CCR5-tropic HIV-1 signaling reveals reprogramming of cellular protein production pathways and identifies p70-S6K1 and MK2 as HIV-responsive kinases required for optimal infection of CD4+ T cells. Retrovirology 15:144
    [Google Scholar]
  63. 63.
    Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV et al. 2020. The global phosphorylation landscape of SARS-CoV-2 infection. Cell 182:3685–712.e19
    [Google Scholar]
  64. 64.
    Kiraly O, Gong G, Olipitz W, Muthupalani S, Engelward BP. 2015. Inflammation-induced cell proliferation potentiates DNA damage-induced mutations in vivo. PLOS Genet 11:2e1004901
    [Google Scholar]
  65. 65.
    Grivennikov SI, Greten FR, Karin M 2010. Immunity, inflammation, and cancer. Cell 140:6883–99
    [Google Scholar]
  66. 66.
    Manke IA, Nguyen A, Lim D, Stewart MQ, Elia AEH, Yaffe MB. 2005. MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Mol. Cell 17:137–48
    [Google Scholar]
  67. 67.
    Köpper F, Bierwirth C, Schön M, Kunze M, Elvers I et al. 2013. Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity. PNAS 110:4216856–61
    [Google Scholar]
  68. 68.
    Phinney BB, Ray AL, Peretti AS, Jerman SJ, Grim C et al. 2018. MK2 regulates macrophage chemokine activity and recruitment to promote colon tumor growth. Front. Immunol. 9:1857
    [Google Scholar]
  69. 69.
    Ray AL, Berggren KL, Cruz SR, Gan GN, Beswick EJ. 2018. Inhibition of MK2 suppresses IL-1β, IL-6, and TNF-α-dependent colorectal cancer growth. Int. J. Cancer 142:81702–11
    [Google Scholar]
  70. 70.
    Suarez-Lopez L, Sriram G, Kong YW, Morandell S, Merrick KA et al. 2018. MK2 contributes to tumor progression by promoting M2 macrophage polarization and tumor angiogenesis. PNAS 115:18E4236–44
    [Google Scholar]
  71. 71.
    Henriques A, Koliaraki V, Kollias G. 2018. Mesenchymal MAPKAPK2/HSP27 drives intestinal carcinogenesis. PNAS 115:24E5546–55
    [Google Scholar]
  72. 72.
    Berggren KL, Cruz SR, Hixon MD, Cowan AT, Keysar SB et al. 2019. MAPKAPK2 (MK2) inhibition mediates radiation-induced inflammatory cytokine production and tumor growth in head and neck squamous cell carcinoma. Oncogene 38:487329–41
    [Google Scholar]
  73. 73.
    Murali B, Ren Q, Luo X, Faget DV, Wang C et al. 2018. Inhibition of the stromal p38MAPK/MK2 pathway limits breast cancer metastases and chemotherapy-induced bone loss. Cancer Res 78:195618–30
    [Google Scholar]
  74. 74.
    Johansen C, Vestergaard C, Kragballe K, Kollias G, Gaestel M, Iversen L. 2009. MK2 regulates the early stages of skin tumor promotion. Carcinogenesis 30:122100–8
    [Google Scholar]
  75. 75.
    Soukup K, Halfmann A, Dillinger B, Poyer F, Martin K et al. 2017. Loss of MAPK-activated protein kinase 2 enables potent dendritic cell-driven anti-tumour T cell response. Sci. Rep. 7:111746
    [Google Scholar]
  76. 76.
    Wang L, Yang H, Palmbos PL, Ney G, Detzler TA et al. 2014. ATDC/TRIM29 phosphorylation by ATM/MAPKAP kinase 2 mediates radioresistance in pancreatic cancer cells. Cancer Res 74:61778–88
    [Google Scholar]
  77. 77.
    Dietlein F, Kalb B, Jokic M, Noll EM, Strong A et al. 2015. A synergistic interaction between Chk1- and MK2 inhibitors in KRAS-mutant cancer. Cell 162:1146–59
    [Google Scholar]
  78. 78.
    Lalaoui N, Hänggi K, Brumatti G, Chau D, Nguyen N-YN et al. 2016. Targeting p38 or MK2 enhances the anti-leukemic activity of smac-mimetics. Cancer Cell 29:2145–58
    [Google Scholar]
  79. 79.
    Phoa AF, Recasens A, Gurgis FMS, Betts TA, Menezes SV et al. 2020. MK2 inhibition induces p53-dependent senescence in glioblastoma cells. Cancers 12:3654
    [Google Scholar]
  80. 80.
    Morandell S, Reinhardt HC, Cannell IG, Kim JS, Ruf DM et al. 2013. A reversible gene-targeting strategy identifies synthetic lethal interactions between MK2 and p53 in the DNA damage response in vivo. Cell Rep 5:4868–77
    [Google Scholar]
  81. 81.
    Moens U, Kostenko S. 2013. Structure and function of MK5/PRAK: the loner among the mitogen-activated protein kinase-activated protein kinases. Biol. Chem. 394:91115–32
    [Google Scholar]
  82. 82.
    Perander M, Keyse SM, Seternes O-M. 2016. New insights into the activation, interaction partners and possible functions of MK5/PRAK. Front. Biosci.-Landmark 21:374–84
    [Google Scholar]
  83. 83.
    Dingar D, Benoit M-J, Mamarbachi AM, Villeneuve LR, Gillis M-A et al. 2010. Characterization of the expression and regulation of MK5 in the murine ventricular myocardium. Cell. Signal. 22:71063–75
    [Google Scholar]
  84. 84.
    Ronkina N, Johansen C, Bohlmann L, Lafera J, Menon MB et al. 2015. Comparative analysis of two gene-targeting approaches challenges the tumor-suppressive role of the protein kinase MK5/PRAK. PLOS ONE 10:8e0136138
    [Google Scholar]
  85. 85.
    Shi Y, Kotlyarov A, Laaß K, Gruber AD, Butt E et al. 2003. Elimination of protein kinase MK5/PRAK activity by targeted homologous recombination. Mol. Cell. Biol. 23:217732–41
    [Google Scholar]
  86. 86.
    Seternes O-M, Mikalsen T, Johansen B, Michaelsen E, Armstrong CG et al. 2004. Activation of MK5/PRAK by the atypical MAP kinase ERK3 defines a novel signal transduction pathway. EMBO J 23:244780–91
    [Google Scholar]
  87. 87.
    Aberg E, Perander M, Johansen B, Julien C, Meloche S et al. 2006. Regulation of MAPK-activated protein kinase 5 activity and subcellular localization by the atypical MAPK ERK4/MAPK4. J. Biol. Chem. 281:4635499–510
    [Google Scholar]
  88. 88.
    Schumacher S, Laass K, Kant S, Shi Y, Visel A et al. 2004. Scaffolding by ERK3 regulates MK5 in development. EMBO J 23:244770–79
    [Google Scholar]
  89. 89.
    Kant S, Schumacher S, Singh MK, Kispert A, Kotlyarov A, Gaestel M. 2006. Characterization of the atypical MAPK ERK4 and its activation of the MAPK-activated protein kinase MK5. J. Biol. Chem. 281:4635511–19
    [Google Scholar]
  90. 90.
    Rousseau J, Klinger S, Rachalski A, Turgeon B, Déléris P et al. 2010. Targeted inactivation of Mapk4 in mice reveals specific nonredundant functions of Erk3/Erk4 subfamily mitogen-activated protein kinases. Mol. Cell. Biol. 30:245752–63
    [Google Scholar]
  91. 91.
    Zimmermann J, Lamerant N, Grossenbacher R, Furst P. 2001. Proteasome- and p38-dependent regulation of ERK3 expression. J. Biol. Chem. 276:1410759–66
    [Google Scholar]
  92. 92.
    Coulombe P, Rodier G, Pelletier S, Pellerin J, Meloche S. 2003. Rapid turnover of extracellular signal-regulated kinase 3 by the ubiquitin-proteasome pathway defines a novel paradigm of mitogen-activated protein kinase regulation during cellular differentiation. Mol. Cell. Biol. 23:134542–58
    [Google Scholar]
  93. 93.
    Mathien S, Déléris P, Soulez M, Voisin L, Meloche S. 2017. Deubiquitinating enzyme USP20 regulates extracellular signal-regulated kinase 3 stability and biological activity. Mol. Cell. Biol. 37:9e00432–16
    [Google Scholar]
  94. 94.
    Brand F, Schumacher S, Kant S, Menon MB, Simon R et al. 2012. The extracellular signal-regulated kinase 3 (mitogen-activated protein kinase 6 [MAPK6])-MAPK-activated protein kinase 5 signaling complex regulates septin function and dendrite morphology. Mol. Cell. Biol. 32:132467–78
    [Google Scholar]
  95. 95.
    Déléris P, Rousseau J, Coulombe P, Rodier G, Tanguay P-L, Meloche S. 2008. Activation loop phosphorylation of the atypical MAP kinases ERK3 and ERK4 is required for binding, activation and cytoplasmic relocalization of MK5. J. Cell. Physiol. 217:3778–88
    [Google Scholar]
  96. 96.
    De La Mota-Peynado A, Chernoff J, Beeser A. 2011. Identification of the atypical MAPK Erk3 as a novel substrate for p21-activated kinase (Pak) activity. J. Biol. Chem. 286:1513603–11
    [Google Scholar]
  97. 97.
    Déléris P, Trost M, Topisirovic I, Tanguay P-L, Borden KLB et al. 2011. Activation loop phosphorylation of ERK3/ERK4 by group I p21-activated kinases (PAKs) defines a novel PAK-ERK3/4-MAPK-activated protein kinase 5 signaling pathway. J. Biol. Chem. 286:86470–78
    [Google Scholar]
  98. 98.
    Perander M, Al-Mahdi R, Jensen TC, Nunn JAL, Kildalsen H et al. 2017. Regulation of atypical MAP kinases ERK3 and ERK4 by the phosphatase DUSP2. Sci. Rep. 7:143471
    [Google Scholar]
  99. 99.
    Perander M, Aberg E, Johansen B, Dreyer B, Guldvik IJ et al. 2008. The Ser186 phospho-acceptor site within ERK4 is essential for its ability to interact with and activate PRAK/MK5. Biochem. J. 411:3613–22
    [Google Scholar]
  100. 100.
    Aberg E, Torgersen KM, Johansen B, Keyse SM, Perander M, Seternes O-M. 2009. Docking of PRAK/MK5 to the atypical MAPKs ERK3 and ERK4 defines a novel MAPK interaction motif. J. Biol. Chem. 284:2919392–401
    [Google Scholar]
  101. 101.
    New L, Jiang Y, Han J. 2003. Regulation of PRAK subcellular location by p38 MAP kinases. Mol. Biol. Cell 14:62603–16
    [Google Scholar]
  102. 102.
    Kostenko S, Shiryaev A, Dumitriu G, Gerits N, Moens U. 2011. Cross-talk between protein kinase A and the MAPK-activated protein kinases RSK1 and MK5. J. Recept. Signal Transduct. Res. 31:11–9
    [Google Scholar]
  103. 103.
    Westhovens R, Keyser FD, Rekalov D, Nasonov EL, Beetens J et al. 2013. Oral administration of GLPG0259, an inhibitor of MAPKAPK5, a new target for the treatment of rheumatoid arthritis: a phase II, randomised, double-blind, placebo-controlled, multicentre trial. Ann. Rheum. Dis. 72:5741–44
    [Google Scholar]
  104. 104.
    Mourey RJ, Burnette BL, Brustkern SJ, Daniels JS, Hirsch JL et al. 2010. A benzothiophene inhibitor of mitogen-activated protein kinase-activated protein kinase 2 inhibits tumor necrosis factor α production and has oral anti-inflammatory efficacy in acute and chronic models of inflammation. J. Pharmacol. Exp. Ther. 333:3797–807
    [Google Scholar]
  105. 105.
    Grädler U, Busch M, Leuthner B, Raba M, Burgdorf L et al. 2020. Biochemical, cellular and structural characterization of novel and selective ERK3 inhibitors. Bioorg. Med. Chem. Lett. 30:22127551
    [Google Scholar]
  106. 106.
    Sun P, Yoshizuka N, New L, Moser BA, Li Y et al. 2007. PRAK is essential for ras-induced senescence and tumor suppression. Cell 128:2295–308
    [Google Scholar]
  107. 107.
    Wang Y, Wang W, Wu H, Zhou Y, Qin X et al. 2021. The essential role of PRAK in tumor metastasis and its therapeutic potential. Nat. Commun. 12:11736
    [Google Scholar]
  108. 108.
    Yoshizuka N, Chen RM, Xu Z, Liao R, Hong L et al. 2012. A novel function of p38-regulated/activated kinase in endothelial cell migration and tumor angiogenesis. Mol. Cell. Biol. 32:3606–18
    [Google Scholar]
  109. 109.
    Horn D, Fernández-Núñez E, Gomez-Carmona R, Rivera-Barahona A, Nevado J et al. 2021. Biallelic truncating variants in MAPKAPK5 cause a new developmental disorder involving neurological, cardiac, and facial anomalies combined with synpolydactyly. Genet. Med. 23:4679–88The first hint of a physiological role for MK5 in human development.
    [Google Scholar]
  110. 110.
    Klinger S, Turgeon B, Lévesque K, Wood GA, Aagaard-Tillery KM, Meloche S 2009. Loss of Erk3 function in mice leads to intrauterine growth restriction, pulmonary immaturity, and neonatal lethality. PNAS 106:3916710–15
    [Google Scholar]
  111. 111.
    Soulez M, Saba-El-Leil MK, Turgeon B, Mathien S, Coulombe P et al. 2019. Reevaluation of the role of extracellular signal-regulated kinase 3 in perinatal survival and postnatal growth using new genetically engineered mouse models. Mol. Cell. Biol. 39:6e00527–18One of two publications revising the seemingly lethal effect of ERK3 deletion.
    [Google Scholar]
  112. 112.
    Ronkina N, Schuster-Gossler K, Hansmann F, Kunze-Schumacher H, Sandrock I et al. 2019. Germ line deletion reveals a nonessential role of atypical mitogen-activated protein kinase 6/extracellular signal-regulated kinase 3. Mol. Cell. Biol. 39:6e00516–18One of two publications revising the seemingly lethal effect of ERK3 deletion.
    [Google Scholar]
  113. 113.
    El-Merahbi R, Viera JT, Valdes AL, Kolczynska K, Reuter S et al. 2020. The adrenergic-induced ERK3 pathway drives lipolysis and suppresses energy dissipation. Genes Dev 34:7–8495–510
    [Google Scholar]
  114. 114.
    Seo J, Kim MH, Hong H, Cho H, Park S et al. 2019. MK5 regulates YAP stability and is a molecular target in YAP-driven cancers. Cancer Res 79:246139–52
    [Google Scholar]
  115. 115.
    Waskiewicz AJ, Flynn A, Proud CG, Cooper JA. 1997. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J 16:81909–20
    [Google Scholar]
  116. 116.
    Fukunaga R, Hunter T. 1997. MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J 16:81921–33
    [Google Scholar]
  117. 117.
    Proud CG. 2015. Mnks, eIF4E phosphorylation and cancer. Biochim. Biophys. Acta Gene Regul. Mech. 1849:7766–73
    [Google Scholar]
  118. 118.
    Maimon A, Mogilevsky M, Shilo A, Golan-Gerstl R, Obiedat A et al. 2014. Mnk2 alternative splicing modulates the p38-MAPK pathway and impacts Ras-induced transformation. Cell Rep 7:2501–13
    [Google Scholar]
  119. 119.
    Zhan Y, Guo J, Yang W, Goncalves C, Rzymski T et al. 2017. MNK1/2 inhibition limits oncogenicity and metastasis of KIT-mutant melanoma. J. Clin. Invest. 127:114179–92
    [Google Scholar]
  120. 120.
    Yang H, Chennamaneni LR, Ho MWT, Ang SH, Tan ESW et al. 2018. Optimization of selective mitogen-activated protein kinase interacting kinases 1 and 2 inhibitors for the treatment of blast crisis leukemia. J. Med. Chem. 61:104348–69
    [Google Scholar]
  121. 121.
    Santag S, Siegel F, Wengner AM, Lange C, Bömer U et al. 2017. BAY 1143269, a novel MNK1 inhibitor, targets oncogenic protein expression and shows potent anti-tumor activity. Cancer Lett 390:21–29
    [Google Scholar]
  122. 122.
    Pyronnet S, Imataka H, Gingras AC, Fukunaga R, Hunter T, Sonenberg N. 1999. Human eukaryotic translation initiation factor 4G (eIF4G) recruits Mnk1 to phosphorylate eIF4E. EMBO J 18:1270–79
    [Google Scholar]
  123. 123.
    Ueda T, Watanabe-Fukunaga R, Fukuyama H, Nagata S, Fukunaga R. 2004. Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development. Mol. Cell. Biol. 24:156539–49The unexpected finding that phosphorylation of eIF4E is not essential for cell growth in general.
    [Google Scholar]
  124. 124.
    Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KLB. 2006. eIF4E is a central node of an RNA regulon that governs cellular proliferation. J. Cell Biol. 175:3415–26
    [Google Scholar]
  125. 125.
    Korneeva NL, Song A, Gram H, Edens MA, Rhoads RE. 2016. Inhibition of mitogen-activated protein kinase (MAPK)-interacting kinase (MNK) preferentially affects translation of mRNAs containing both a 5′-terminal cap and hairpin. J. Biol. Chem. 291:73455–67
    [Google Scholar]
  126. 126.
    Jensen KB, Dredge BK, Toubia J, Jin X, Iadevaia V et al. 2021. capCLIP: a new tool to probe translational control in human cells through capture and identification of the eIF4E–mRNA interactome. Nucleic Acids Res 49:18e105
    [Google Scholar]
  127. 127.
    Ueda T, Sasaki M, Elia AJ, Chio IIC, Hamada K et al. 2010. Combined deficiency for MAP kinase-interacting kinase 1 and 2 (Mnk1 and Mnk2) delays tumor development. PNAS 107:3213984–90One of two publications assigning a tumor-promoting role to eIF4E phosphorylation by MNKs.
    [Google Scholar]
  128. 128.
    Furic L, Rong L, Larsson O, Koumakpayi IH, Yoshida K et al. 2010. eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. PNAS 107:3214134–39One of two publications assigning a tumor-promoting role to eIF4E phosphorylation by MNKs.
    [Google Scholar]
  129. 129.
    Kosciuczuk EM, Kar AK, Blyth GT, Fischietti M, Abedin S et al. 2019. Inhibitory effects of SEL201 in acute myeloid leukemia. Oncotarget 10:677112–21
    [Google Scholar]
  130. 130.
    Xu Y, Poggio M, Jin HY, Shi Z, Forester CM et al. 2019. Translation control of the immune checkpoint in cancer and its therapeutic targeting. Nat. Med. 25:2301–11
    [Google Scholar]
  131. 131.
    Brown MC, Gromeier M. 2017. MNK controls mTORC1:substrate association through regulation of TELO2 binding with mTORC1. Cell Rep 18:61444–57
    [Google Scholar]
  132. 132.
    Xie J, Shen K, Jones AT, Yang J, Tee AR et al. 2020. Reciprocal signaling between mTORC1 and MNK2 controls cell growth and oncogenesis. Cell. Mol. Life Sci. 78:249–70
    [Google Scholar]
  133. 133.
    Sandeman LY, Kang WX, Wang X, Jensen KB, Wong D et al. 2020. Disabling MNK protein kinases promotes oxidative metabolism and protects against diet-induced obesity. Mol. Metab. 42:101054
    [Google Scholar]
  134. 134.
    Merrett JE, Xie J, Psaltis PJ, Proud CG. 2020. MAPK-interacting kinase 2 (MNK2) regulates adipocyte metabolism independently of its catalytic activity. Biochem. J. 477:142735–54
    [Google Scholar]
  135. 135.
    Gorentla BK, Krishna S, Shin J, Inoue M, Shinohara ML et al. 2013. Mnk1 and 2 are dispensable for T cell development and activation but important for the pathogenesis of experimental autoimmune encephalomyelitis. J. Immunol. 190:31026–37
    [Google Scholar]
  136. 136.
    Williams MR, Arthur JSC, Balendran A, van der Kaay J, Poli V et al. 2000. The role of 3-phosphoinositide-dependent protein kinase 1 in activating AGC kinases defined in embryonic stem cells. Curr. Biol. 10:8439–48
    [Google Scholar]
  137. 137.
    Deak M, Clifton AD, Lucocq LM, Alessi DR. 1998. Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J 17:154426–41
    [Google Scholar]
  138. 138.
    New L, Zhao M, Li Y, Bassett WW, Feng Y et al. 1999. Cloning and characterization of RLPK, a novel RSK-related protein kinase. J. Biol. Chem. 274:21026–32
    [Google Scholar]
  139. 139.
    Naqvi S, Macdonald A, McCoy CE, Darragh J, Reith AD, Arthur JSC. 2011. Characterization of the cellular action of the MSK inhibitor SB-747651A. Biochem. J. 441:1347–57
    [Google Scholar]
  140. 140.
    Josefowicz SZ, Shimada M, Armache A, Li CH, Miller RM et al. 2016. Chromatin kinases act on transcription factors and histone tails in regulation of inducible transcription. Mol. Cell 64:2347–61
    [Google Scholar]
  141. 141.
    Arthur JSC. 2008. MSK activation and physiological roles. Front. Biosci.-Landmark 13:5866–79
    [Google Scholar]
  142. 142.
    Wiggin GR, Soloaga A, Foster JM, Murray-Tait V, Cohen P, Arthur JSC. 2002. MSK1 and MSK2 are required for the mitogen- and stress-induced phosphorylation of CREB and ATF1 in fibroblasts. Mol. Cell. Biol. 22:82871–81
    [Google Scholar]
  143. 143.
    Soloaga A, Thomson S, Wiggin GR, Rampersaud N, Dyson MH et al. 2003. MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. EMBO J 22:112788–97
    [Google Scholar]
  144. 144.
    Ananieva O, Darragh J, Johansen C, Carr JM, McIlrath J et al. 2008. The kinases MSK1 and MSK2 act as negative regulators of Toll-like receptor signaling. Nat. Immunol. 9:91028–36Demonstration of the complex role of MAPKAPKs in innate immunity.
    [Google Scholar]
  145. 145.
    McGuire VA, Rosner D, Ananieva O, Ross EA, Elcombe SE et al. 2017. Beta interferon production is regulated by p38 mitogen-activated protein kinase in macrophages via both MSK1/2- and tristetraprolin-dependent pathways. Mol. Cell. Biol. 37:1e00454–16
    [Google Scholar]
  146. 146.
    Singh K, Cassano M, Planet E, Sebastian S, Jang SM et al. 2015. A KAP1 phosphorylation switch controls MyoD function during skeletal muscle differentiation. Genes Dev 29:5513–25
    [Google Scholar]
  147. 147.
    Llanos S, Cuadrado A, Serrano M. 2009. MSK2 inhibits p53 activity in the absence of stress. Sci. Signal. 2:89ra57
    [Google Scholar]
  148. 148.
    Chang S, Iversen L, Kragballe K, Arthur JSC, Johansen C. 2011. Mice lacking MSK1 and MSK2 show reduced skin tumor development in a two-stage chemical carcinogenesis model. Cancer Invest 29:3240–45
    [Google Scholar]
  149. 149.
    Gawrzak S, Rinaldi L, Gregorio S, Arenas EJ, Salvador F et al. 2018. MSK1 regulates luminal cell differentiation and metastatic dormancy in ER+ breast cancer. Nat. Cell Biol. 20:2211–21
    [Google Scholar]
  150. 150.
    Reyes D, Ballaré C, Castellano G, Soronellas D, Bagó JR et al. 2014. Activation of mitogen- and stress-activated kinase 1 is required for proliferation of breast cancer cells in response to estrogens or progestins. Oncogene 33:121570–80
    [Google Scholar]
  151. 151.
    Qi H, Yang Z, Dai C, Wang R, Ke X et al. 2020. STAT3 activates MSK1-mediated histone H3 phosphorylation to promote NFAT signaling in gastric carcinogenesis. Oncogenesis 9:215
    [Google Scholar]
  152. 152.
    Park J, Al-Ramahi I, Tan Q, Mollema N, Diaz-Garcia JR et al. 2013. RAS–MAPK–MSK1 pathway modulates ataxin 1 protein levels and toxicity in SCA1. Nature 498:7454325–31
    [Google Scholar]
  153. 153.
    Brami-Cherrier K. 2005. Parsing molecular and behavioral effects of cocaine in mitogen- and stress-activated protein kinase-1-deficient mice. J. Neurosci. 25:4911444–54
    [Google Scholar]
  154. 154.
    Reyskens KMSE, Arthur JSC. 2016. Emerging roles of the mitogen and stress activated kinases MSK1 and MSK2. Front. Cell Dev. Biol. 4:56
    [Google Scholar]
  155. 155.
    Privitera L, Morè L, Cooper DD, Richardson P, Tsogka M et al. 2020. Experience recruits MSK1 to expand the dynamic range of synapses and enhance cognition. J. Neurosci. 40:244644–60
    [Google Scholar]
  156. 156.
    Morice E, Enderlin V, Gautron S, Laroche S. 2021. Contrasting functions of mitogen- and stress-activated protein kinases 1 and 2 in recognition memory and in vivo hippocampal synaptic transmission. Neuroscience 463:70–85
    [Google Scholar]
  157. 157.
    Darlyuk-Saadon I, Bai C, Heng CKM, Gilad N, Yu W-P et al. 2021. Active p38α causes macrovesicular fatty liver in mice. PNAS 118:14e2018069118In vivo evidence that activated p38 leads to MK2 reduction.
    [Google Scholar]
  158. 158.
    Darlyuk-Saadon I, Heng CKM, Bai C, Gilad N, Yu W et al. 2021. Expression of a constitutively active p38α mutant in mice causes early death, anemia, and accumulation of immunosuppressive cells. FEBS J 288:133978–99
    [Google Scholar]
  159. 159.
    Ho K-K, McGuire VA, Koo CY, Muir KW, de Olano N et al. 2012. Phosphorylation of FOXO3a on Ser-7 by p38 promotes its nuclear localization in response to doxorubicin. J. Biol. Chem. 287:21545–55
    [Google Scholar]
  160. 160.
    Menon MB, Schwermann J, Singh AK, Franz-Wachtel M, Pabst O et al. 2010. p38 MAP kinase and MAPKAP kinases MK2/3 cooperatively phosphorylate epithelial keratins. J. Biol. Chem. 285:4333242–51
    [Google Scholar]
  161. 161.
    Tiedje C, Ronkina N, Tehrani M, Dhamija S, Laass K et al. 2012. The p38/MK2-driven exchange between tristetraprolin and HuR regulates AU-rich element-dependent translation. PLOS Genet 8:9e1002977
    [Google Scholar]
  162. 162.
    Briata P, Forcales SV, Ponassi M, Corte G, Chen C-Y et al. 2005. p38-dependent phosphorylation of the mRNA decay-promoting factor KSRP controls the stability of select myogenic transcripts. Mol. Cell 20:6891–903
    [Google Scholar]
  163. 163.
    Lafarga V, Cuadrado A, de Silanes IL, Bengoechea R, Fernandez-Capetillo O, Nebreda AR. 2009. p38 Mitogen-activated protein kinase- and HuR-dependent stabilization of p21Cip1 mRNA mediates the G1/S checkpoint. Mol. Cell. Biol. 29:164341–51
    [Google Scholar]
  164. 164.
    Liu G, Zhang Y, Bode AM, Ma W-Y, Dong Z 2002. Phosphorylation of 4E-BP1 is mediated by the p38/MSK1 pathway in response to UVB irradiation. J. Biol. Chem. 277:118810–16
    [Google Scholar]
  165. 165.
    Zaru R, Ronkina N, Gaestel M, Arthur JSC, Watts C. 2007. The MAPK-activated kinase Rsk controls an acute Toll-like receptor signaling response in dendritic cells and is activated through two distinct pathways. Nat. Immunol. 8:111227–35
    [Google Scholar]
  166. 166.
    Ronkina N, Lafera J, Kotlyarov A, Gaestel M. 2016. Stress-dependent phosphorylation of myocardin-related transcription factor A (MRTF-A) by the p38MAPK/MK2 axis. Sci. Rep. 6:131219
    [Google Scholar]
  167. 167.
    Heidenreich O, Neininger A, Schratt G, Zinck R, Cahill MA et al. 1999. MAPKAP kinase 2 phos-phorylates serum response factor in vitro and in vivo. J. Biol. Chem. 274:2014434–43
    [Google Scholar]
  168. 168.
    Taylor GA, Carballo E, Lee DM, Lai WS, Thompson MJ et al. 1996. A pathogenetic role for TNFα in the syndrome of cachexia, arthritis, and autoimmunity resulting from tristetraprolin (TTP) deficiency. Immunity 4:5445–54
    [Google Scholar]
  169. 169.
    Tiedje C, Lubas M, Tehrani M, Menon MB, Ronkina N et al. 2015. p38MAPK/MK2-mediated phosphorylation of RBM7 regulates the human nuclear exosome targeting complex. RNA 21:2262–78
    [Google Scholar]
  170. 170.
    Blasius M, Wagner SA, Choudhary C, Bartek J, Jackson SP. 2014. A quantitative 14-3-3 interaction screen connects the nuclear exosome targeting complex to the DNA damage response. Genes Dev 28:181977–82
    [Google Scholar]
  171. 171.
    Borisova ME, Voigt A, Tollenaere MAX, Sahu SK, Juretschke T et al. 2018. p38-MK2 signaling axis regulates RNA metabolism after UV-light-induced DNA damage. Nat. Commun. 9:11017
    [Google Scholar]
  172. 172.
    Bulavin DV, Higashimoto Y, Popoff IJ, Gaarde WA, Basrur V et al. 2001. Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 411:6833102–7
    [Google Scholar]
  173. 173.
    Reinhardt HC, Yaffe MB. 2009. Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2. Curr. Opin. Cell Biol. 21:2245–55
    [Google Scholar]
  174. 174.
    Reinhardt HC, Hasskamp P, Schmedding I, Morandell S, van Vugt MATM et al. 2010. DNA damage activates a spatially distinct late cytoplasmic cell-cycle checkpoint network controlled by MK2-mediated RNA stabilization. Mol. Cell 40:134–49
    [Google Scholar]
  175. 175.
    Lee T-H, Choi JY, Park J-M, Kang T-H. 2020. Posttranscriptional control of the replication stress response via TTP-mediated Claspin mRNA stabilization. Oncogene 39:163245–57
    [Google Scholar]
  176. 176.
    Romeo Y, Zhang X, Roux PP. 2011. Regulation and function of the RSK family of protein kinases. Biochem. J. 441:2553–69
    [Google Scholar]
  177. 177.
    Anjum R, Blenis J. 2008. The RSK family of kinases: emerging roles in cellular signalling. Nat. Rev. Mol. Cell Biol. 9:10747–58
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-081720-114505
Loading
/content/journals/10.1146/annurev-biochem-081720-114505
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error