Skip to main content

Advertisement

Log in

Streptococcus pneumoniae exerts oxidative stress, subverts antioxidant signaling and autophagy in human corneal epithelial cells that is alleviated by tert-Butylhydroquinone

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Streptococcus pneumoniae is one of the leading causes of bacterial keratitis in the developing world and globally. In the current study, we have determined oxidative stress as pathogenesis of S. pneumoniae infection in corneal tissues and human corneal epithelial cells (HCEC) and explored host immune response of HCEC towards S. pneumoniae. We also determined whether treatment with tert-Butylhydroquinone (tBHQ), a Nrf2 inducer, could alleviate oxidative stress and reduce bacterial cytotoxicity in these cells. Oxidative stress was determined in corneal tissues of patients and HCEC by immunohistochemistry and immunofluorescence analysis, respectively. The expression of antioxidant genes, cytokines and antimicrobial peptides was determined by quantitative PCR. Infection of HCEC by S. pneumoniae was determined by colony-forming units. The autophagy and cell death were determined by fluorescence microscopy. The phosphorylation of signaling proteins was evaluated by immunoblot analysis. S. pneumoniae induced oxidative stress during corneal infections and inhibited antioxidant signaling pathways and immune responses like autophagy. tBHQ aided in restoring Nrf2 activation, reduced reactive oxygen species generation and prevented cytotoxicity and cell death in S. pneumoniae-infected HCEC. tBHQ also induced autophagy in a Nrf2-dependent manner and reduced bacterial survival in HCEC. Increased expression of antimicrobial peptides by tBHQ might have contributed to a reduction of bacterial load and cytotoxicity, as exemplified in LL-37 depleted corneal epithelial cells exposed to S. pneumoniae compared to control siRNA-transfected cells. tBHQ mediates alleviation of oxidative stress induced by S. pneumoniae by activating Nrf2-mediated antioxidant signaling in corneal epithelial cells. tBHQ also enhances expression of antimicrobial peptides in corneal cells and aids in inhibition of bacterial survival and cytotoxicity of HCEC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Whitcher JP, Srinivasan M, Upadhyay MP (2001) Corneal blindness: a global perspective. Bull World Health Organ 79:214–221

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gupta N, Tandon R, Gupta SK, Sreenivas V, Vashist P (2013) Burden of corneal blindness in India. Indian J Community Med 38:198–206

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lin CC, Lalitha P, Srinivasan M, Prajna NV, McLeod SD, Acharya NR, Lietman TM, Porco TC (2012) Seasonal trends of microbial keratitis in South India. Cornea 31:1123–1127

    Article  PubMed  PubMed Central  Google Scholar 

  4. Short WR, Tunkel AR (2000) Changing epidemiology of bacterial meningitis in the United States. Curr Infect Dis Rep 2:327–331

    Article  CAS  PubMed  Google Scholar 

  5. Tomasz A (1997) Antibiotic resistance in Streptococcus pneumoniae. Clin Infect Dis 24(Suppl 1):S85–S88

    Article  CAS  PubMed  Google Scholar 

  6. Heikkinen T, Chonmaitree T (2003) Importance of respiratory viruses in acute otitis media. Clin Microbiol Rev 16:230–241

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hirst RA, Kadioglu A, O’Callaghan C, Andrew PW (2004) The role of pneumolysin in pneumococcal pneumonia and meningitis. Clin Exp Immunol 138:195–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tweten RK (2005) Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect Immun 73:6199–6209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Berry AM, Lock RA, Hansman D, Paton JC (1989) Contribution of autolysin to virulence of Streptococcus pneumoniae. Infect Immun 57:2324–2330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bui NK, Eberhardt A, Vollmer D, Kern T, Bougault C, Tomasz A, Simorre JP, Vollmer W (2012) Isolation and analysis of cell wall components from Streptococcus pneumoniae. Anal Biochem 421:657–666

    Article  CAS  PubMed  Google Scholar 

  11. Paton JC, Rowan-Kelly B, Ferrante A (1984) Activation of human complement by the pneumococcal toxin pneumolysin. Infect Immun 43:1085–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mori Y, Yamaguchi M, Terao Y, Hamada S, Ooshima T, Kawabata S (2012) α-Enolase of Streptococcus pneumoniae induces formation of neutrophil extracellular traps. J Biol Chem 287:10472–10481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gn J, Theron AJ, Durandt C, Tintinger GR, Pool R, Mitchell TJ, Feldman C, Anderson R (2016) Pneumolysin activates neutrophil extracellular trap formation. Clin Exp Immunol 184:358–367

    Article  CAS  Google Scholar 

  14. Mediero S, de Los B, Bueis A, Spiess K, Diaz-Almiron M, Del Hierro ZA, Villalain Rodes I, Garcia PA (2018) Clinical and microbiological profile of infectious keratitis in an area of Madrid, Spain. Enferm Infecc Microbiol Clin 36:409–416

    Article  Google Scholar 

  15. Rai P, Parrish M, Tay IJ, Li N, Ackerman S, He F, Kwang J, Chow VT, Engelward BP (2015) Streptococcus pneumoniae secretes hydrogen peroxide leading to DNA damage and apoptosis in lung cells. Proc Natl Acad Sci U S A 112:E3421–E3430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pericone CD, Park S, Imlay JA, Weiser JN (2003) Factors contributing to hydrogen peroxide resistance in Streptococcus pneumoniae include pyruvate oxidase (SpxB) and avoidance of the toxic effects of the fenton reaction. J Bacteriol 185:6815–6825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ulland TK, Ferguson PJ, Sutterwala FS (2015) Evasion of inflammasome activation by microbial pathogens. J Clin Invest 125:469–477

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zahlten J, Kim YJ, Doehn JM, Pribyl T, Hocke AC, Garcia P, Hammerschmidt S, Suttorp N, Hippenstiel S, Hubner RH (2015) Streptococcus pneumoniae-induced oxidative stress in lung epithelial cells depends on pneumococcal autolysis and is reversible by resveratrol. J Infect Dis 211:1822–1830

    Article  CAS  PubMed  Google Scholar 

  19. Saleh M, Bartual SG, Abdullah MR, Jensch I, Asmat TM, Petruschka L, Pribyl T, Gellert M, Lillig CH, Antelmann H, Hermoso JA, Hammerschmidt S (2013) Molecular architecture of Streptococcus pneumoniae surface thioredoxin-fold lipoproteins crucial for extracellular oxidative stress resistance and maintenance of virulence. EMBO Mol Med 5:1852–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Filomeni G, De Zio D, Cecconi F (2015) Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ 22:377–388

    Article  CAS  PubMed  Google Scholar 

  21. Wen X, Wu J, Wang F, Liu B, Huang C, Wei Y (2013) Deconvoluting the role of reactive oxygen species and autophagy in human diseases. Free Radic Biol Med 65:402–410

    Article  CAS  PubMed  Google Scholar 

  22. Kiffin R, Bandyopadhyay U, Cuervo AM (2006) Oxidative stress and autophagy. Antioxid Redox Signal 8:152–162

    Article  CAS  PubMed  Google Scholar 

  23. Taguchi K, Motohashi H, Yamamoto M (2011) Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells 16:123–140

    Article  CAS  PubMed  Google Scholar 

  24. Li J, Johnson D, Calkins M, Wright L, Svendsen C, Johnson J (2005) Stabilization of Nrf2 by tBHQ confers protection against oxidative stress-induced cell death in human neural stem cells. Toxicol Sci 83:313–328

    Article  CAS  PubMed  Google Scholar 

  25. Wang Z, Ji C, Wu L, Qiu J, Li Q, Shao Z, Chen G (2014) Tert-butylhydroquinone alleviates early brain injury and cognitive dysfunction after experimental subarachnoid hemorrhage: role of Keap1/Nrf2/ARE pathway. PLoS ONE 9:e97685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Snyder ME, Katz HR (1992) Ciprofloxacin-resistant bacterial keratitis. Am J Ophthalmol 114:336–338

    Article  CAS  PubMed  Google Scholar 

  27. Goldstein MH, Kowalski RP, Gordon YJ (1999) Emerging fluoroquinolone resistance in bacterial keratitis: a 5-year review. Ophthalmology 106:1313–1318

    Article  CAS  PubMed  Google Scholar 

  28. Lalitha P, Manoharan G, Karpagam R, Prajna NV, Srinivasan M, Mascarenhas J, Das M, Porco TC, Lietman TM, Cevallos V, Keenan JD (2017) Trends in antibiotic resistance in bacterial keratitis isolates from South India. Br J Ophthalmol 101:108–113

    Article  PubMed  Google Scholar 

  29. Sharma P, Sharma N, Mishra P, Joseph J, Mishra DK, Garg P, Roy S (2019) Differential expression of antimicrobial peptides in Streptococcus pneumoniae Keratitis and STAT3-Dependent expression of LL-37 by Streptococcus pneumoniae in Human Corneal Epithelial Cells. Pathogens 8:31

    Article  CAS  PubMed Central  Google Scholar 

  30. Araki-Sasaki K, Ohashi Y, Sasabe T, Hayashi K, Watanabe H, Tano Y, Handa H (1995) An SV40-immortalized human corneal epithelial cell line and its characterization. Invest Ophthalmol Vis Sci 36:614–621

    CAS  PubMed  Google Scholar 

  31. Sharma P, Guha S, Garg P, Roy S (2018) Differential expression of antimicrobial peptides in corneal infection and regulation of antimicrobial peptides and reactive oxygen species by type III secretion system of Pseudomonas aeruginosa. Pathog Dis. https://doi.org/10.1093/femspd/fty001

    Article  PubMed  Google Scholar 

  32. Paiva CN, Bozza MT (2014) Are reactive oxygen species always detrimental to pathogens? Antioxid Redox Signal 20:1000–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bottcher T, Gerber J, Wellmer A, Smirnov AV, Fakhrjanali F, Mix E, Pilz J, Zettl UK, Nau R (2000) Rifampin reduces production of reactive oxygen species of cerebrospinal fluid phagocytes and hippocampal neuronal apoptosis in experimental Streptococcus pneumoniae meningitis. J Infect Dis 181:2095–2098

    Article  CAS  PubMed  Google Scholar 

  34. Navarro-Yepes J, Burns M, Anandhan A, Khalimonchuk O, del Razo LM, Quintanilla-Vega B, Pappa A, Panayiotidis MI, Franco R (2014) Oxidative stress, redox signaling, and autophagy: cell death versus survival. Antioxid Redox Signal 21:66–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yoshii SR, Mizushima N (2017) Monitoring and measuring autophagy. Int J Mol Sci 18:1865

    Article  PubMed Central  CAS  Google Scholar 

  36. Of F, Rusten TE, Stenmark H (2013) Phosphoinositide 3-kinases as accelerators and brakes of autophagy. FEBS J 280:6322–6337

    Article  CAS  Google Scholar 

  37. Awuh JA, Haug M, Mildenberger J, Marstad A, Do CP, Louet C, Stenvik J, Steigedal M, Damas JK, Halaas O, Flo TH (2015) Keap1 regulates inflammatory signaling in Mycobacterium avium-infected human macrophages. Proc Natl Acad Sci USA 112:E4272–E4280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ding SZ, Minohara Y, Fan XJ, Wang J, Reyes VE, Patel J, Dirden-Kramer B, Boldogh I, Ernst PB, Crowe SE (2007) Helicobacter pylori infection induces oxidative stress and programmed cell death in human gastric epithelial cells. Infect Immun 75:4030–4039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu Y, Duan C, Kuang Z, Hao Y, Jeffries JL, Lau GW (2013) Pseudomonas aeruginosa pyocyanin activates NRF2-ARE-mediated transcriptional response via the ROS-EGFR-PI3K-AKT/MEK-ERK MAP kinase signaling in pulmonary epithelial cells. PLoS ONE 8:e72528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hosakote YM, Liu T, Castro SM, Garofalo RP, Casola A (2009) Respiratory syncytial virus induces oxidative stress by modulating antioxidant enzymes. Am J Respir Cell Mol Biol 41:348–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gjyshi O, Flaherty S, Veettil MV, Johnson KE, Chandran B, Bottero V (2015) Kaposi’s sarcoma-associated herpesvirus induces Nrf2 activation in latently infected endothelial cells through SQSTM1 phosphorylation and interaction with polyubiquitinated Keap1. J Virol 89:2268–2286

    Article  PubMed  CAS  Google Scholar 

  42. Komaravelli N, Tian B, Ivanciuc T, Mautemps N, Brasier AR, Garofalo RP, Casola A (2015) Respiratory syncytial virus infection down-regulates antioxidant enzyme expression by triggering deacetylation-proteasomal degradation of Nrf2. Free Radic Biol Med 88:391–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou Y, Holland MJ, Makalo P, Joof H, Roberts CH, Mabey DC, Bailey RL, Burton MJ, Weinstock GM, Burr SE (2014) The conjunctival microbiome in health and trachomatous disease: a case control study. Genome Med 6:99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Huang J, Brumell JH (2014) Bacteria-autophagy interplay: a battle for survival. Nat Rev Microbiol 12:101–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li P, Shi J, He Q, Hu Q, Wang YY, Zhang LJ, Chan WT, Chen WX (2015) Streptococcus pneumoniae induces autophagy through the inhibition of the PI3K-I/Akt/mTOR pathway and ROS hypergeneration in A549 cells. PLoS ONE 10:e0122753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ogawa M, Takada N, Shizukuishi S, Tomokiyo M, Chang B, Yoshida M, Kakuta S, Tanida I, Ryo A, Guan JL, Takeyama H, Ohnishi M (2020) Streptococcus pneumoniae triggers hierarchical autophagy through reprogramming of LAPosome-like vesicles via NDP52-delocalization. Commun Biol 3:25

    Article  PubMed  PubMed Central  Google Scholar 

  47. Xue Y, Du M, Sheng H, Hovde CJ, Zhu MJ (2017) Escherichia coli O157:H7 suppresses host autophagy and promotes epithelial adhesion via Tir-mediated and cAMP-independent activation of protein kinase A. Cell Death Discov 3:17055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Birmingham CL, Canadien V, Gouin E, Troy EB, Yoshimori T, Cossart P, Higgins DE, Brumell JH (2007) Listeria monocytogenes evades killing by autophagy during colonization of host cells. Autophagy 3:442–451

    Article  CAS  PubMed  Google Scholar 

  49. Schnaith A, Kashkar H, Leggio SA, Addicks K, Kronke M, Krut O (2007) Staphylococcus aureus subvert autophagy for induction of caspase-independent host cell death. J Biol Chem 282:2695–2706

    Article  CAS  PubMed  Google Scholar 

  50. Rekha RS, Rao Muvva SS, Wan M, Raqib R, Bergman P, Brighenti S, Gudmundsson GH, Agerberth B (2015) Phenylbutyrate induces LL-37-dependent autophagy and intracellular killing of Mycobacterium tuberculosis in human macrophages. Autophagy 11:1688–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gomez JC, Dang H, Martin JR, Doerschuk CM (2016) Nrf2 modulates host defense during Streptococcus pneumoniae pneumonia in mice. J Immunol 197:2864–2879

    Article  CAS  PubMed  Google Scholar 

  52. Bonay M, Roux AL, Floquet J, Retory Y, Herrmann JL, Lofaso F, Deramaudt TB (2015) Caspase-independent apoptosis in infected macrophages triggered by sulforaphane via Nrf2/p38 signaling pathways. Cell Death Discov 1:15022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge Hyderabad Eye Research Foundation, LVPEI for support. This study was supported by in parts by grants from SERB-DST, Govt. of India, (Grant No. EMR/2016/001514) and DBT, Govt. of India, (BT/PR32404/MED/30/2136/2019) to S.R, and student fellowship from UGC, Govt. of India to P.S. The authors duly acknowledge the help of Pathology Department, LVPEI. Excellent technical assistance from Bharathi Bhogapurapu and Apurwa Samarth is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanhita Roy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Edited by: Volkhard A. J. Kempf.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3701 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Roy, S. Streptococcus pneumoniae exerts oxidative stress, subverts antioxidant signaling and autophagy in human corneal epithelial cells that is alleviated by tert-Butylhydroquinone. Med Microbiol Immunol 211, 119–132 (2022). https://doi.org/10.1007/s00430-022-00731-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-022-00731-y

Keywords

Navigation