Skip to main content
Log in

A numerical scheme based on Gegenbauer wavelets for solving a class of relaxation–oscillation equations of fractional order

  • Original Research
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

Abstract

Owing to increasing applications of the fractional relaxation–oscillation equations across various scientific endeavours, a considerable amount of attention has been paid for solving these equations. Our endeavour is to develop an elegant numerical scheme based on Gegenbauer wavelets for solving the fractional-order relaxation–oscillation equations. To facilitate the narrative, the Gegenbauer wavelets are presented and the corresponding operational matrix of fractional-order integration is constructed via the block pulse functions. The prime features of the Gegenbauer wavelets and block pulse functions are then utilized to reduce the system at hand into a set of algebraic equations, solved by means of Newton method. The efficiency and accuracy of the proposed numerical scheme are demonstrated via several illustrative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Samadyar, N., Ordokhani, Y., Mirzaee, F.: Hybrid Taylor and block-pulse functions operational matrix algorithm and its application to obtain the approximate solution of stochastic evolution equation driven by fractional Brownian motion. Commun. Nonlinear Sci. Numer. Simul. 90, 105346 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Samadyar, N., Mirzaee, F.: Numerical scheme for solving singular fractional partial integro-differential equation via orthonormal Bernoulli polynomials. Int. J. Numer. Model. 32, e2652 (2019)

    Article  Google Scholar 

  3. Mirzaee, F., Samadyar, N.: Implicit meshless method to solve 2D fractional stochastic Tricomi-type equation defined on irregular domain occurring in fractal transonic flow. Numer. Meth. Partial Diff. Eq. 37, 1781–1799 (2021)

    Article  MathSciNet  Google Scholar 

  4. Mirzaee, F., Samadyar, Nasrin: Application of hat basis functions for solving two-dimensional stochastic fractional integral equations. Comp. Appl. Math. 4(37), 4899–4916 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bagley, R.L., Torvik, P.J.: On the appearance of the fractional derivative in the behavior of real materials. ASME J. Appl. Mech. 51(2), 294–308 (1984)

    Article  MATH  Google Scholar 

  6. Beyer, H., Kempfle, S.: Definition of physically consistent damping laws with fractional derivatives. Zeitsch. für Angewandte Math. Mechanik. 75(8), 623–635 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caputo, M.: Linear models of dissipation whose \(Q\) is almost frequency independent. II. J. Roy. Austral. Soc. 13, 529–539 (1967)

    Article  Google Scholar 

  8. Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solit. Fract. 7(9), 1461–1477 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Tofighi, A.: The intrinsic damping of the fractional oscillator. Phys. A. 329, 29–34 (2003)

    Article  Google Scholar 

  10. Chen, W., Zhang, X., Korošak, D.: Investigation on fractional and fractal derivative relaxation-oscillation models. Int. J. Nonlinear Sci. Numer. Simulat. 11, 3–9 (2010)

    Article  Google Scholar 

  11. Anjara, F., Solofoniaina, J.: Solution of general fractional oscillation relaxation equation by Adomians method. Gen. Math. Notes. 20(2), 1–11 (2014)

    Google Scholar 

  12. Yıldırıma, A., Momanib, S.: Series solutions of a fractional oscillator by means of the homotopy perturbation method. Int. J. Comput. Math. 87(5), 1072–1082 (2010)

    Article  MathSciNet  Google Scholar 

  13. Al-rabtah, A., Ertürk, V.S., Momani, S.: Solutions of a fractional oscillator by using differential transform method. Comput. Math. Appl. 59, 1356–1362 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Odibat, Z., Momani, S.: Application of variational iteration method to equations of fractional order. Int. J. Nonlinear Sci. Numer. Simul. 7, 271–291 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yi, M.-X., Huang, J., Wei, J.-X.: Block pulse operational matrix method for solving fractional partial differential equation. Appl. Math. Comput. 221, 121–131 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Shah, F.A., Abass, R.: Haar wavelet operational matrix method for the numerical solution of fractional-order differential equations. Nonlinear Eng. 4(4), 203–213 (2015)

    Article  Google Scholar 

  17. Shah, F.A., Abass, R.: Generalized wavelet collocation method for solving fractional relaxation-oscillation equation arising in fluid mechanics. Internat. J. Comput. Mater. Sci. Eng. 6(2), 1–17 (2017)

    Google Scholar 

  18. Shah, F.A., Abass, R., Debnath, L.: Numerical solution of fractional differential equations using Haar wavelet collocation method. Internat. J. Appl. Comput. Math. 3, 2423–2445 (2017)

    Article  MATH  Google Scholar 

  19. Shah, F.A., Abass, R.: Solution of fractional oscillator equations using ultraspherical wavelets. Int. J. Geomet. Methods Mod. Phys. 6(5), 1950075 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, X.: Numerical solution of fractional differential equations using cubic \(B\)-spline wavelet collocation method. Commun. Nonlinear Sci. Numer. Simulat. 17, 3934–3946 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gülsu, M., Öztürk, Y., Anapali, A.: Numerical approach for solving fractional relaxation-oscillation equation. Appl. Mathemat. Modell. 37(8), 5927–5937 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hamarsheh, M., Ismail, A., Odibat, Z.: Optimal homotopy asymptotic method for solving fractional relaxation-oscillation equation. J. Interpol. App. Sci. Comput. 2, 98–111 (2015)

    MathSciNet  Google Scholar 

  23. Srivastava, H.M., Shah, F.A., Irfan, M.: A generalized wavelet quasilinearization method for solving population growth model of fractional order. Math. Meth. Appl. Sci. (2020). https://doi.org/10.1002/mma.6542

    Article  MathSciNet  MATH  Google Scholar 

  24. Shah, F.A., Irfan, M.: A computational wavelet method for solving dual-phase-lag model of bioheat transfer during hyperthermia treatment. Comput. Math. Methods. (2020). https://doi.org/10.1002/cmm4.1095

    Article  MathSciNet  Google Scholar 

  25. Debnath, L., Shah, F.A.: Lectuer Notes on Wavelet Transforms. Birkhäuser, Boston (2017)

    Book  MATH  Google Scholar 

  26. Debnath, L., Shah, F.A.: Wavelet Transforms and Their Applications. Birkhäuser, New York (2015)

    Book  MATH  Google Scholar 

  27. Lepik, U., Hein, H.: Haar Wavelets with Applications. Springer, New York (2014)

    Book  MATH  Google Scholar 

  28. Samadyar, N., Mirzaee, F.: Orthonormal Bernoulli polynomials collocation approach for solving stochastic Itǒ-Volterra integral equations of Abel type. Int. J. Numer. Model. 1(33), e2688 (2020)

    Google Scholar 

  29. Mirzaee, F., Solhi, E., Samadyar, N.: Moving least squares and spectral collocation method to approximate the solution of stochastic Volterra-Fredholm integral equations. Appl. Numer. Math. 161, 275–285 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mirzaee, F., Samadyar, N.: Application of Bernoulli wavelet method for estimating a solution of linear stochastic Itŏ-Volterra integral equations. Multi. Model. Mater. Struct. 3(15), 575–598 (2019)

    Article  Google Scholar 

  31. Mirzaee, F., Samadyar, N.: On the numerical solution of stochastic quadratic integral equations via operational matrix method. Math. Meth. Appl. Sci. 41, 4465–4479 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ozdemir, N., Secer, A., Bayram, M.: The Gegenbauer wavelets-based computational methods for the coupled system of Burgers’ equations with time-fractional derivative. Mathematics 7, 486 (2019). https://doi.org/10.3390/math7060486

    Article  Google Scholar 

  33. Secer, A., Ozdemir, N.: An effective computational approach based on Gegenbauer wavelets for solving the time-fractional Kdv-Burgers-Kuramoto equation. Adv. Difference Eqs. (2019). https://doi.org/10.1186/s13662-019-2297-8

    Article  MATH  Google Scholar 

  34. Kumar, S., Pandey, P., Das, S.: Gegenbauer wavelet operational matrixmethod for solving variable-order non-linear reaction-diffusion and Galilei invariant advection-diffusion equations. Comput. Appl. Math. 88, 162 (2019). https://doi.org/10.1007/s40314-019-0952-z

    Article  MATH  Google Scholar 

  35. Elhameed, W.M., Youssri, Y.H.: New ultraspherical wavelets spectral solutions for fractional Riccati differential equations. Abstr. Appl. Anal. 2014, 8 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Rehman, M., Saeed, U.: Gegenbauer wavelets operational matrix method for fractional differential equations. J. Korean Math. Soc. 52(5), 1069–1096 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Celik, I.: Generalization of Gegenbauer wavelet collocation method to the Ggeneralized Kuramoto-Sivashinsky equation. Int. J. Appl. Comput. Math. 4, 111 (2018). https://doi.org/10.1007/s40819-018-0546-2

    Article  MATH  Google Scholar 

  38. Celik, I.: Gegenbauer wavelet collocation method for the extended Fisher-Kolmogorov equation in two dimensions. Math. Meth. Appl. Sci. 16, 1–14 (2020). https://doi.org/10.1002/mma.6300

    Article  MathSciNet  MATH  Google Scholar 

  39. Srivastava, H.M., Shah, F.A., Abass, R.: An application of the Gegenbauer wavelet method for the numerical solution of the fractional Bagley-Torvik equation. Russian J. Math. Phys. 26(1), 77–93 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lizorkin, P.I.: Fractional integration and differentiation. Encyclopedia of Mathematics EMS Press, (2001)

  41. Miller, K.S., Kenneth, S., Bertram, R.: An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons, Hoboken (1993)

    MATH  Google Scholar 

  42. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies. Elsevier (North-Holland) Science Publishers, Amsterdam (2006)

    Google Scholar 

  43. Mirzaee, F., Alipour, S., Samadyar, N.: Numerical solution based on hybrid of block-pulse and parabolic functions for solving a system of nonlinear stochastic Itŏ-Volterra integral equations of fractional order. J. Comput. Appl. Math. 349, 157–171 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Chen, C.F., Hsiao, C.H.: Haar wavelet method for solving lumped and distributed-parameter systems. IEE Proc. Control Theory Appl. 144, 87–94 (1997)

    Article  MATH  Google Scholar 

  45. Kai, D., Guido, W.: Numerical solution of fractional order differential equations by extrapolation. Numer. Algorithms 16, 231–253 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kottakkaran Sooppy Nisar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nisar, K.S., Shah, F.A. A numerical scheme based on Gegenbauer wavelets for solving a class of relaxation–oscillation equations of fractional order. Math Sci 17, 233–245 (2023). https://doi.org/10.1007/s40096-022-00465-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40096-022-00465-1

Keywords

Mathematics Subject Classification

Navigation