Skip to main content
Log in

OSBN: architecture and control mechanism of optical switched satellite backbone network

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

With the success of commercial spaceflights, space information infrastructure (SII) has received much attention in recent years. Blueprints such as the low earth orbit global communication network and the data center in space have been proposed. To these ends, a satellite backbone network (SBN) is an essential part of SII and can connect multiple heterogeneous space networks, provide high-throughput connections for other space information devices, and even provide space computing power. To obtain ultra-high bandwidth and resource flexibility over limited channels, we propose a timeslot-based optical switched SBN (OSBN). More specifically, we show the node structure, switching system and bandwidth-on-demand (BoD) mechanism of the proposed OSBN. By simulation, we analyze the OSBN’s performances under different designed parameters and suggest the best ones. In addition, the BoD mechanism is verified to enhance differentiated service-of-quality. Experimentally, we demonstrate the access and handover processing of OSBN. Additionally, we analyze the performance of space computing over an imitated OSBN platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Code availability

The code used in the current study is available from the corresponding author on reasonable request.

Materials availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Kodheli, O., et al.: Satellite communications in the new space era: a survey and future challenges. In: IEEE Communications Surveys & Tutorials, vol. 23, no. 1, pp. 70–109. Firstquarter (2021)

  2. Yao, H., Wang, L., Wang, X., Lu, Z., Liu, Y.: The space-terrestrial integrated network: an overview. IEEE Commun. Mag. 56(9), 178–185 (2018)

    Article  Google Scholar 

  3. Bai, L., de Cola, T., Yu, Q., Zhang, W.: Space information networks. IEEE Wirel. Commun. 26(2), 8–9 (2019)

    Article  Google Scholar 

  4. Fogliati, V.: ISICOM: integrated space infrastructure for global communications. In: 4th Advanced Satellite Mobile Systems, vol. 2008, pp. 13–15 . Bologna (2008)

  5. Sun, X., Cao, S.: A routing and wavelength assignment algorithm based on two types of LEO constellations in optical satellite networks. J. Lightwave Technol. 38(8), 2106–2113 (2020)

    Article  Google Scholar 

  6. Lyras, N., Efrem, N., Kourogiorgas, I., Panagopoulos, A., Arapoglou, P.: Optimizing the ground network of optical MEO satellite communication systems. IEEE Syst. J. 14(3), 3968–3976 (2020)

    Article  Google Scholar 

  7. Cao, X., Yang, P., Alzenad, M., Xi, X., Wu, D., Yanikomeroglu, H.: Airborne communication networks: a survey. IEEE J. Sel. Areas Commun. 36(9), 1907–1926 (2018)

    Article  Google Scholar 

  8. “Starklink” from SpaceX [Online]. https://www.starlink.com/

  9. “Space Communication and Navigation” from NASA [Online]. https://www.nasa.gov/directorates/heo/scan/explore

  10. Earth and Space on AWS [Online]. https://www.protocol.com/newsletters/cloud/why-aws-wants-to-build-a-cloud-above-the-clouds?rebelltitem=4#rebelltitem4

  11. Król, M., Mastorakis, S., Oran, D., Kutscher, D.: Compute first networking: distributed computing meets ICN. In: Proceedings of the 6th ACM Conference on Information-Centric Networking, pp. 67–77 (2019)

  12. Zhao, J., Gao, F., Wu, Q., Jin, S., Wu, Y., Jia, W.: Beam tracking for UAV mounted SatCom on-the-move with massive antenna array. IEEE J. Sel. Areas Commun. 36(2), 363–375 (2018)

    Article  Google Scholar 

  13. “ETS-9 Satellite Communications Project” from Japan [Online]. http://www2.nict.go.jp/spacelab/en/pj_ets9.html

  14. Kopeikin, A., et al.: Dynamic mission planning for communication control in multiple unmanned aircraft teams. Unmanned Syst. 1(01), 41–58 (2013)

    Article  Google Scholar 

  15. Huang, H., Guo, S., Wang, K.: Envisioned wireless big data storage for low-earth-orbit satellite-based cloud. IEEE Wirel. Commun. 25(1), 26–31 (2018)

    Article  Google Scholar 

  16. Zheng, D., Li, Y., Chen, E., Li, B., Kong, D., Li, W., Wu, J.: Free-space to few-mode-fiber coupling under atmospheric turbulence. Opt. Express 24, 18739–18744 (2016)

    Article  Google Scholar 

  17. Zheng, D., Li, Y., Zhou, H., Bian, Y., Yang, C., Li, W., Qiu, J., Guo, H., Hong, X., Zuo, Y., Giles, I., Tong, W., Wu, J.: Performance enhancement of free-space optical communications under atmospheric turbulence using modes diversity coherent receipt. Opt. Express 26, 28879–28890 (2018)

    Article  Google Scholar 

  18. Karafolas, N., Baroni, S.: Optical satellite networks. J. Lightwave Technol. 18(12), 1792–1806 (2000)

    Article  Google Scholar 

  19. Lluch, I., Grogan, P.T., Pica, U., Golkar, A.: Simulating a proactive ad-hoc network protocol for federated satellite systems. In: Proceedings of IEEE Aerospace Conference, pp. 1–16 (2015)

  20. Di, B., Zhang, H., Song, L., Li, Y., Li, G.Y.: Ultra-dense LEO: integrating terrestrial-satellite networks into 5G and beyond for data offloading. IEEE Trans. Wirel. Commun. 18(1), 47–62 (2019)

    Article  Google Scholar 

  21. Zheng, Y., Zhao, S., Liu, Y., Tan, Q., Li, Y., Jiang, Y.: Topology control in self-organized optical satellite networks based on minimum weight spanning tree. Aerosp. Sci. Technol. 69, 449–457 (2017)

    Article  Google Scholar 

  22. Kedar, D., Arnon, S.: Backscattering-induced crosstalk in WDM optical wireless communication. J. Lightwave Technol. 23(6), 2023–2030 (2005)

    Article  Google Scholar 

  23. Li, T., et al.: Optical burst switching based satellite backbone network. In: Fourth Seminar on Novel Optoelectronic Detection Technology and Application, vol. 10697, International Society for Optics and Photonics (2018)

  24. Bao, J., et al.: OpenSAN: a software-defined satellite network architecture. ACM SIGCOMM Comput. Commun. Rev. 44(4), 347–348 (2014)

    Article  Google Scholar 

  25. Chan, V.W.S.: Optical satellite networks. J. Lightwave Technol. 21(11), 2811–2827 (2003)

    Article  Google Scholar 

  26. Tan, L., Yang, Q., Ma, J., Jiang, S.: Wavelength dimensioning of optical transport networks over nongeosychronous satellite constellations. J. Opt. Commun. Netw. 2, 166–174 (2010)

    Article  Google Scholar 

  27. Papa, A., de Cola, T., Vizarreta, P., He, M., Mas-Machuca, C., Kellerer, W.: Design and evaluation of reconfigurable SDN LEO constellations. IEEE Trans. Netw. Serv. Manag. 17(3), 1432–1445 (2020)

    Article  Google Scholar 

  28. Wu, Z., et al.: A graph-based satellite handover framework for LEO satellite communication networks. IEEE Commun. Lett. 20(8), 1547–1550 (2016)

    Article  Google Scholar 

  29. Tsunoda, H., Ohta, K., Kato, N., Nemoto, Y.: Supporting IP/LEO satellite networks by handover-independent IP mobility management. IEEE J. Sel. Areas Commun. 22(2), 300–307 (2004)

    Article  Google Scholar 

  30. Yan, L., Ding, X., Zhang, G.: Dynamic channel allocation aided random access for SDN-enabled LEO satellite IoT. J. Commun. Inf. Netw. 6(2), 134–141 (2021)

    Google Scholar 

  31. Yiqing, L., Yuqing, L., Xiaoying, G., Jingchao, W., Youyun, X., Xinbing, W.: Markov approximation for multilayered selection in satellite network. J. Commun. Inf. Netw. 1(3), 23–31 (2016)

    Article  Google Scholar 

  32. Jiang, C., Zhu, X.: Reinforcement learning based capacity management in multi-layer satellite networks. IEEE Trans. Wireless Commun. 19(7), 4685–4699 (2020)

    Article  Google Scholar 

  33. Deng, C., Guo, W., Weisheng, H., Zhu, W., Zhou, B.: Algorithm for the lightpath reservation provisioning of data relay services in a GEO network. J. Opt. Commun. Netw. 9, 658–668 (2017)

    Article  Google Scholar 

  34. Qiao, C., Yoo, M.: Optical burst switching (OBS)—a new paradigm for an optical internet. J. High Speed Netw. 8(1), 69–84 (1999)

    Google Scholar 

  35. Chawathe, S.: Analysis of burst header packets in optical burst switching networks. In: IEEE 17th International Symposium on Network Computing and Applications (NCA), pp. 1–5. Cambridge, MA (2018)

  36. Vargas, T., Guerri, J., Sales, S.: Optimal configuration for size-based burst assembly algorithms at the edge node for video traffic transmissions over OBS networks. In: 2008 10th Anniversary International Conference on Transparent Optical Networks, Athens, pp. 130-133 (2008)

  37. Yan, F., et al.: Method and Device for Processing Service Crossing Master Node. U.S. Patent Application No. 15/021,424

  38. Chen, X., et al.: Dynamic bandwidth scheduling method and device, and computer storage medium. U.S. Patent No. 9,755,980. 5, (2017)

  39. Gauger, C., et al.: Optical burst transport network (OBTN)—a novel architecture for efficient transport of optical burst data over lambda grids. In: Workshop on High Performance Switching and Routing, pp. 58–62 (2005)

  40. OPNET [Online]. https://opnetprojects.com/opnet-network-simulator/

  41. Zhang, D., et al.: Analysis and experimental demonstration of an optical switching enabled scalable data center network architecture. Opt. Switch. Netw. 23, 205–214 (2017)

    Article  Google Scholar 

  42. Zhang, D., et al.: Optical switching based small-world data center network. Comput. Commun. 103, 153–164 (2017)

    Article  Google Scholar 

  43. Chowdhury, M., et al.: Efficient coflow scheduling with varys. In: Proceedings of the 2014 ACM Conference on SIGCOMM, pp. 443–454 (2014)

  44. Dean, J., Sanjay, G.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  45. Li, M., et al.: Scaling distributed machine learning with the parameter server. In: 11th USENIX Symposium on Operating Systems Design and Implementation, pp. 583–598 (2014)

  46. Hadoop [Online]. https://hadoop.apache.org/

  47. Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The HiBench benchmark suite: characterization of the mapreduce-based data analysis. In: 2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010), Long Beach, CA, pp. 41–51 (2010)

  48. Torch [Online]. https://pytorch.org/

  49. Horovod [Online]. https://github.com/horovod/horovod

  50. CNN ML job [Online]. https://github.com/google/n-digit-mnist

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cen Wang.

Ethics declarations

Conflict of interest

Not applicable.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Yoshikane, N., Guo, H. et al. OSBN: architecture and control mechanism of optical switched satellite backbone network. Photon Netw Commun 43, 165–176 (2022). https://doi.org/10.1007/s11107-022-00972-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-022-00972-0

Keywords

Navigation