Skip to main content

Advertisement

Log in

Inherited metabolic diseases mimicking hereditary spastic paraplegia (HSP): a chance for treatment

  • Review Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

The syndromic group of hereditary spastic paraplegias has a heterogeneous clinical profile and a broad differential diagnosis, including neurometabolic disorders that are potentially treatable. This group includes 5,10-methylenetetrahydrofolate reductase deficiency, cobalamin C deficiency disease, dopamine responsive dystonia, cerebrotendinous xanthomatosis, biotinidase deficiency, GLUT1 deficiency syndrome, delta-e-pyrroline-carboxylase-synthetase deficiency, hyperonithinemia-hyperammonemia-homocitrullinuria syndrome, arginase deficiency, multiple carboxylase deficiency, and X-linked adrenoleukodystrophy. This review describes these diseases in detail, highlighting the importance of early diagnosis and effective treatment aiming at preserving functionality and quality of life in these patients. For the purpose of this study, we carried a non-systematic review on PUBMED, finding an initial sample of 122 papers; upon refining, 41 articles were found relevant to this review. Subsequently, we added review articles and works with historical relevance, totalizing 76 references. An adequate diagnostic workup in patients presenting with spastic paraplegia phenotype should include screening for these rare conditions, followed by parsimonious ancillary investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Burguez D, Polese-Bonatto M, Scudeiro LAJ et al (2017) Clinical and molecular characterization of hereditary spastic-paraplegias: a next-generation sequencing panel approach. J Neurol Sci 383:18–25

    Article  CAS  PubMed  Google Scholar 

  2. de Souza PVS, Pinto WBVR, Batistella GNR, Botholin T, Oliveira ASB (2017) Hereditary spastic paraplegia: clinical and genetic hallmarks. Cerebellum 16(2):525–551

    Article  PubMed  CAS  Google Scholar 

  3. Lo Giudice T, Lombardi F, Santorelli FM, Kawarai T, Orlacchio A (2014) Hereditary spastic paraplegia: clinical-genetic characteristics and evolving molecular mechanisms. Exp Neurol 261:518–539

    Article  CAS  PubMed  Google Scholar 

  4. Synofzik M, Schüle R (2017) Overcoming the divide between ataxias and spastic paraplegias: shared phenotypes, genes and pathways. Mov Disord 32(3):332–345

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hedera P (2016) Hereditary and metabolic myelopathies. Handb Clin Neurol 136:769–785

    Article  PubMed  Google Scholar 

  6. Fink JK (2013) Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol 126(3):307–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Depienne C, Stevanin G, Brice A, Durr A (2007) Hereditary spastic paraplegia: an update. Curr Opin Neurol 20:674–680

    Article  CAS  PubMed  Google Scholar 

  8. Ebrahimi-Fakhari D, Saffari A, Pearl PL (2021) Childhood-onset hereditary spastic paraplegia and its treatable mimics. Mol Genet Metab S1096–7192(21):00735–00736

    Google Scholar 

  9. Ebrahimi-Fakhari D, van Karnebeek C, Münchau A (2019) Movement disorders in treatable inborn errors of metabolism. Mov Disord 34:598–613

    Article  PubMed  Google Scholar 

  10. Ortigoza-Escobar JD (2020) A proposed diagnostic algorithm for inborn errors of metabolism presenting with movement disorders. Front Neurol 11:582160. https://doi.org/10.3389/fneu.2020.582160

    Article  PubMed  PubMed Central  Google Scholar 

  11. de Bolt ST, Willemsen MAAP, Vermeer S, Kremer HPH, van de Warremburg BPC (2012) Reviewing the genetic causes of spastic-ataxias. Neurology 79:1507–1514

    Article  Google Scholar 

  12. Pearson TS, Pons R, Ghaoui R, Sue CM (2019) Genetic mimics of cerebral palsy. Mov Disord 34:625–635

    Article  PubMed  Google Scholar 

  13. Marelli C, Salsano E, Politi LS, Labauge P (2019) Spinal cord involvement in adult-onset metabolic and genetic diseases. J Neurol Neurosurg Pstchiatry 90(2):211–218

    Article  Google Scholar 

  14. Fink J (2021) Hereditary myelopathies. Continuum (Minneap Minn) 27(1):185–204

    Google Scholar 

  15. Ginsberg L (2017) Myelopathy: chameleons and mimics. Pract Neurol 17:6–12

    Article  PubMed  Google Scholar 

  16. Ginsberg L (2011) Disorders of the spinal cord and roots. Pract Neurol 11:259–267

    Article  PubMed  Google Scholar 

  17. Wong SH, Boggild M, Enevoldson TP et al (2008) Myelopathy but normal MRI: where the next? Pract Neurol 8:90–102

    Article  CAS  PubMed  Google Scholar 

  18. Wei Y, Zhou Y, Yuan J, Ni J, Qian M, Cui L, Peng B (2019) Treatable cause of hereditary spastic paraplegia: eight cases of combined homocysteinaemia with methylmalonic aciduria. J Neurol 266(10):2434–2439

    Article  CAS  PubMed  Google Scholar 

  19. Waespe W, Wigger BMV, Bächli E, Boltshauser E (1995) Differential diagnosis aspects of progressive spastic paraplegia in adults with emphasis on neurometabolic diseases. Praxis (Berlim) 84(16):473–477

    CAS  Google Scholar 

  20. Zaric BL, Obradovic M, Bajic V, Haidara MA, Jonanovic M, Isenbovic ER (2019) Homocysteine and hyperhomocysteinaemia. Curr Med Chem 26(16):2948–2961

    Article  CAS  PubMed  Google Scholar 

  21. Trimmer EE (2013) Methylenetetrahydrofolate reductase: biochemical characterization and medical significance. Curr Pharm Des 19(14):2574–2593

    Article  CAS  PubMed  Google Scholar 

  22. Gales A, Masingue M, Milecamps S et al (2018) Adolescence/adult onset MTHFR deficiency may manifest as isolated and treatable distinct neuro-psychiatric syndromes. Orphanet J Rare Dis 13(1):29. https://doi.org/10.1186/s13023-018-0767-9

    Article  PubMed  PubMed Central  Google Scholar 

  23. Levin BL, Varga E (2016) MTHFR: addressing genetic counseling dilemmas using evidence-based literature. J Genet Couns 25(5):901–911

    Article  PubMed  Google Scholar 

  24. Perna A, Masciullo M, Modoni A, Cellini E, Parrini E, Ricci E, Donati AM, Silvestri G (2018) Severe 5,10-methylenetetrahydrofolate reductase deficiency: a rare, treatable cause of complicated hereditary spastic paraplegia. Eur J Neurol 25(3):602–605

    Article  CAS  PubMed  Google Scholar 

  25. Lossos A, Teltsh O, Milman T et al (2014) Severe methylenetetrahydrofolate reductase deficiency: clinical clues to a potentially treatable cause of adult-onset hereditary spastic paraplegia. JAMA Neurol 71(7):901–904

    Article  PubMed  Google Scholar 

  26. Diekman EF et al (2014) Survival and psychomotor development with early betaine treatment in patients with severe methylenetetrahydrofolate reductase deficiency. JAMA Neurol 71(2):188–194

    Article  PubMed  Google Scholar 

  27. Huemer M et al (2017) Guidelines for diagnosis and management of the cobalamin-related remethylation disorders cblC, cblD, cblE, cblF, cblG, cblJ and MTHFR deficiency. J Inherit Metab Dis 40:21–48

    Article  CAS  PubMed  Google Scholar 

  28. Froese DS, Huemer M, Suormala T et al (2016) Mutation update and review of severe methylenetetrahydrofolate reductase deficiency. Hum Mutat 37(5):427–438

    Article  CAS  PubMed  Google Scholar 

  29. Bodamer AO, Rosenblatt DS, Appel SH, Beaudet AL (2001) Adult-onset combined methylmalonic aciduria and homocystinuria (cblC). Neurology 56(8):1113

    Article  CAS  PubMed  Google Scholar 

  30. Weinsfeld-Adams JD, Bender HÁ, Miley-Akerstedt A et al (2013) Neurologic and neurodevelopmental phenotypes in young children with early-treated combined methylmalonic acidemia and homocystinuria, cobalamin C type. Mol Genet Metab 110(3):241–247

    Article  CAS  Google Scholar 

  31. Wang C, Liu Y, Cai F et al (2020) Rapid screening of MMACHC gene mutations by high-resolution melting curve analysis. Mol Genet Genomic Med 8(6):e1221

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Cui J, Wang Y, Zhang H, Cui X, Wang L, Zheng H (2019) Isolated subacute combined degeneration in late-onset cobalamin C deficiency in children: two case reports and literature review. Medicine (Baltimore) 98(39):e17334

    Article  Google Scholar 

  33. Müller U, Steinberger D, Topka H (2002) Mutations of GCH1 in dopa-responsive dystonia. J Neural Transm (Vienna) 109(3):321–328

    Article  Google Scholar 

  34. Antelmi E, Stamelou M, Liguori R, Bhatia KP (2015) Nonmotor symptoms in dopa-responsive dystonia. Mov Disor Clin Pract 2(4):347–356

    Article  Google Scholar 

  35. Wijemanne S, Jankovic J (2015) Dopa-responsive dystonia – clinical and genetic heterogeneity. Nat Rev Neurol 11(7):414–424

    Article  CAS  PubMed  Google Scholar 

  36. Weng YC, Wang CC, Wu YR (2018) Atypical presentation of dopa-responsive dystonia in Taiwan. Brain Behav 8(2):e00906

    Article  PubMed  PubMed Central  Google Scholar 

  37. Varghaei P, Yoon G, Estiar MA, Veyron S, Leveille E, Dupre N, Trempe JF, Rouleau GA, Gan‐Or Z. GCH1 mutations in hereditary spastic paraplegia. Clin Genet. 2021. https://doi.org/10.1111/cge.13955. Epub ahead of print.

  38. Fan Z, Greenwood R, Felix ACG et al (2014) GCH1 heterozygous mutation identified by whole-exome-sequencing as a treatable condition in a patient presenting with progressive spastic paraplegia. J Neurol 261(3):622–624

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wassemberg T, Schouten MI, Helmich RC, Willemsen MAAP, Kamsteeg EJ, van de Warrenburg BPC (2020) Autosomal dominant GCH1 mutations causing spastic paraplegia at disease onset. Parkinsonism Relat Disord 74:12–15

    Article  Google Scholar 

  40. Gallus GN, Dotti MT, Federico A (2006) Clinical and molecular diagnosis of cerebrotendinous xanthomatosis with a review of the mutations in the CYP27A1 gene. Neurol Sci 27(2):143–149

    Article  CAS  PubMed  Google Scholar 

  41. Salen G, Steiner RD (2017) Epidemiology, diagnosis and treatment of cerebrotendinous xnahtomatosis (CTX). J Inherit Metab Dis 40(6):771–781

    Article  CAS  PubMed  Google Scholar 

  42. Nie S, Chen G, Cao X, Zhang Y (2014) Cerebrotendinous xanthomatosis: a comprehensive review of pathogenesis, clinical manifestations, diagnosis, and management. Orphanet J Rare Dis 9:179. https://doi.org/10.1186/s13023-014-0179-4

    Article  PubMed  PubMed Central  Google Scholar 

  43. Laurent A, Dairou F, Luc G, Truffert J, Lapresle J, de Genners JL. van Bogaert´s cerebrotendinous xanthomatosis. A study of 3 cases. Ann Med Interne (Paris) 1988; 139 (6): 395–402.

  44. Stelten BML, van de Warremburg BPC, Wevers RA, Verrips A (2019) Movement disorders in cerebrotendinous xanthomatosis. Parkinsonism Relat Disord 58:12–16

    Article  PubMed  Google Scholar 

  45. Pilo-de-la-Fuente B, Jimenez-Escrig A, Lorenzo JR et al (2011) Cerebrotendineous xanthomatosis in Spain: clinical, prognostic, and genetic survey. Eur J Neurol 18:1203–1211

    Article  CAS  PubMed  Google Scholar 

  46. Saute JA, Giugliani R, Merkens LS, Chiang JPW, De Barber AE, de Souza CFM (2015) Look carefully to the heels! A potentially treatable cause of spastic paraplegia. J Inherit Metab Dis 38(2):363–364

    Article  PubMed  Google Scholar 

  47. Nicholls Z, Hobson E, Martindale J, Shaw PJ (2015) Diagnosis of spinal xanthomatosis by next-generation sequencing: identifying a rare, treatable mimic of hereditary spastic paraparesis. Pract Neurol 15(4):280–283

    Article  PubMed  Google Scholar 

  48. Verrips A et al (2020) The safety and effectiveness of chenodeoxycholic acid treatment in patients with cerebrotendinous xanthomatosis: two retrospective cohort studies. Neurol Sci 41(4):943–949

    Article  PubMed  Google Scholar 

  49. Panza E, Martinelli D, Magini P, Vici CD, Seri M (2019) Hereditary spastic paraplegia is a common phenotypic finding in ARG1 deficiency, P5CS deficiency and HHH syndrome: three inborn errors of metabolism caused by alteration of an interconnected pathway of glutamate and urea cycle metabolism. Front Neurol 10:131. https://doi.org/10.3389/fneur.2019.00131

    Article  PubMed  PubMed Central  Google Scholar 

  50. Panza E, Escamilla-Honrubia JM, Marco-Marín C et al (2016) ALDH18A1 gene mutations cause dominant spastic paraplegia SPG9: loss of function effect and plausibility of a dominant negative mechanism. Brain 139(Pt 1):e3. https://doi.org/10.1093/brain/awv247

    Article  PubMed  Google Scholar 

  51. Coutelier M, Goizet C, Alexandra Durr et al. Alteration of ornithine metabolism leads to dominant and recessive hereditary spastic paraplegia. Brain 2015; 138 (Pt 8): 2191–2195. https://doi.org/10.1093/brain/awv143.

  52. Martinelli D et al (2012) Understanding pyrroline-5-carboxylate synthetase deficiency: clinical, molecular, functional, and expression studies, structure-based analysis, and novel therapy with arginine. J Inherit Metab Dis 35(5):761–776

    Article  CAS  PubMed  Google Scholar 

  53. Häberle J et al (2019) Suggested guidelines for the diagnosis and management of urea cycle disorders: first revision. J Inherit Metab Dis 42(6):1192–1230

    Article  PubMed  Google Scholar 

  54. Ferreira P, Chan A, Wolf B (2017) Irreversibility of symptoms with biotin therapy in an adult with profound biotinidase deficiency. J Inherit Metab Dis Rep 36:117–120

    Google Scholar 

  55. Funghini S, Tonin R, Malvagia S et al (2020) High frequency of biotinidase deficiency in Italian population identified by newborn screening. Mol Genet Metab Rep 25:100689. https://doi.org/10.1016/j.ymgmr.2020.100689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wolf B (2011) The neurology of biotinidase deficiency. Mol Genet Metab 104(1–2):27–34

    Article  CAS  PubMed  Google Scholar 

  57. Wiznitzer M, Bangert BA (2003) Biotinidase deficiency: clinical and MRI findings consistent with myelopathy. Pediatr Neurol 29(1):56–58

    Article  PubMed  Google Scholar 

  58. Wolf B (2012) Biotinidase deficiency: “if you have to have an inherited metabolic Disease, this is the one to have.” Genet Med 14(6):565–575

    Article  CAS  PubMed  Google Scholar 

  59. Yilmaz S, Serin M, Canda E, Eraslan C, Tekin H, Ucar SK, Gokben S, Tekgul H, Serdaroglu G (2017) A treatable cause of myelopathy and vision loss mimicking neuromyelitis optica spectrum disorder: late-onset biotinidase deficiency. Metab Brain Dis 32(3):675–678

    Article  PubMed  Google Scholar 

  60. Livne M, Gibson KM, Amir N, Eshel G, Elpeleg ON (1994) Holocarboxylase synthetase deficiency: a treatable metabolic disorder masquerading as cerebral palsy. J Child Neurol 9(2):170–172

    Article  CAS  PubMed  Google Scholar 

  61. Komur M, Okuyaz C, Ezgu F, Atici A (2011) A girl with spastic tetraparesis associated with biotinidase deficiency. Eur J Paediatr Neurol 15(6):551–553

    Article  PubMed  Google Scholar 

  62. Wolf B. “Think metabolic” in adults with diagnostic challenges. Biotinidase deficiency as a paradigm disorder. Neurol Clin Pract 2017; 7 (6): 518–522.

  63. Wolf B (2017) Successful outcomes of older adolescents and adults with profound biotinidase deficiency identified by newborn screening. Genet Metab 19(4):396–402

    CAS  Google Scholar 

  64. Suormala T, Fowler B, Duran M, et al. Five patients with a biotin-responsive defect. In holocarboxylase formation: evaluation of responsiveness to biotin therapy in vivo and comparative biochemical studies in vitro. Pediatr Res 1007; 41 (5): 666–673.

  65. Wolf B (2010) Clinical issues and frequent questions about biotinidase deficiency. Mol Genet Metab 100(1):6–13

    Article  CAS  PubMed  Google Scholar 

  66. Bottin L et al (2015) Biotinidase deficiency mimicking neuromyelitis optica: initially exhibiting symptoms in adulthood. Mult Scler 21(12):1604–1607

    Article  CAS  PubMed  Google Scholar 

  67. Klepper J, Akman C, Armeno M et al (2020) Glut1 deficiency syndrome (Glut1DS): state of the art in 2020 and recommendations of the International Glut1DS study group. Epilepsia Open 5(3):354–365

    Article  PubMed  PubMed Central  Google Scholar 

  68. Gras D, Roze E, Caillet S et al (2014) GLUT1 deficiency syndrome: an update. Rev Neurol (Paris) 170(2):91–99

    Article  CAS  Google Scholar 

  69. Pearson TS, Akman C, Hinton VJ, Engelstad K, De Vivo DC (2013) Phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS). Curr Neurol Neurosci Rep 13(4):342

    Article  PubMed  CAS  Google Scholar 

  70. Pascual JM, Wang D, Lecumberri B et al (2004) GLUT1 deficiency and other glucose transport diseases. Eur J Endocrinol 150(5):627–633

    Article  CAS  PubMed  Google Scholar 

  71. Diomedi M, Gan-Or Z, Placidi F et al (2016) A 23 years follow-up study identifies GLUT1 deficiency syndrome initially diagnosed as complicated hereditary spastic paraplegia. Eur J Med Genet 59(11):564–568

    Article  PubMed  Google Scholar 

  72. Verroti A, Di Francesco L, Striano P (2019) GLUT1 deficiency and pediatric-onset hereditary spastic paraplegia: a new classification. Eur J Paediatr Neurol 23(2):233–234

    Article  Google Scholar 

  73. Nicita F, Schirinzi T, Stregapede F, Vasco G, Bertini E, Travaglini L (2019) SLCA1 mutations are a cause of pediatric-onset hereditary spastic paraplegia. Eur J Paediatr Neurol 23(2):329–332

    Article  PubMed  Google Scholar 

  74. Ciarlariello VB, Freitas JL, Pedroso JL, Barsottini OGP (2019) X-linked adrenoleukodystrophy mimicking hereditary spastic paraplegia. Mov Disord Clin Pract 7(1):109–110

    Article  PubMed  PubMed Central  Google Scholar 

  75. Turk BR, Theda C, Fatemi A, Moser AB (2020) X-linked adrenoleukodystrophy: pathology, pathophysiology, diagnostic testing, newborn screening and therapies. Int J Dev Neurosci 80(1):52–72

    Article  PubMed  PubMed Central  Google Scholar 

  76. Jousserand G, Antoine JC, Camdessanché JP (2010) Musty odour, mental retardation, and spastic paraplegia revealing phenylketonuria in adulthood. J Neurol 257(2):302–304

    Article  PubMed  Google Scholar 

  77. Duarte S, Cruz Martins R, Rodrigues M, et al. Association of cerebral folate deficiency and hereditary spastic paraplegia. Neurologia 2020; Oct 16: S0213–4853(20)30284-X.

Download references

Author information

Authors and Affiliations

Authors

Contributions

HAGT: study concept and design, literature review, writing of the first draft, review and critique, writing of the final manuscript; CHFC: literature review, writing of the first draft; ERP: literature review, writing of the first draft, writing of the final draft; LC: writing of the final manuscript; RPM: study concept and design, writing of the first draft, review and critique, writing of the final manuscript.

Corresponding author

Correspondence to Hélio A. G. Teive.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teive, H.A.G., Camargo, C.H.F., Pereira, E.R. et al. Inherited metabolic diseases mimicking hereditary spastic paraplegia (HSP): a chance for treatment. Neurogenetics 23, 167–177 (2022). https://doi.org/10.1007/s10048-022-00688-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-022-00688-3

Keywords

Navigation