Skip to main content

Advertisement

Log in

Clinical, genetic profile and disease progression of sarcoglycanopathies in a large cohort from India: high prevalence of SGCB c.544A > C

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

The clinico-genetic architecture of sarcoglycanopathies in Indian patients is reported only as short series. In the present study, we aimed to investigate the clinical picture, genetic basis, and disease progression of patients genetically confirmed to have sarcoglycanopathy. Next-generation sequencing was performed in 68 probands with suspected sarcoglycanopathy. A total of 35 different variants were detected in the sarcoglycan genes in 68 probands (M = 37; age range, 5–50 years). Consanguinity was present in 44 families. Thirty-two variants are predicted to be pathogenic/likely pathogenic, among which 25 (78.13%) are reported, and 7 (21.87%) are novel. The clinical diagnosis was confirmed in a total of 64 (94.12%) probands with biallelic variations [SGCA(n=18); SGCB(n=34); SGCG(n=7); SGCD(n=5)]. The most common mutation was c.544A > C (p.Thr182Pro) in SGCB, and detected in 20 patients (29.42%). The majority of pathogenic mutations are homozygous (n = 30; 93.75%). Variants in 4 cases are of uncertain significance. Thirty-three patients lost ambulation at a mean age of 15.12 ± 9.47 years, after 7.76 ± 5.95 years into the illness. Only 2 patients had cardiac symptoms, and one had respiratory muscle involvement. The results from this study suggest that mutations in SGCB are most common, followed by SGCA, SGCG, and SGCD. The novel variations identified in this study expand the mutational spectrum of sarcoglycanopathies. To the best of our knowledge, this is the first study from India to describe a large cohort of genetically confirmed patients with sarcoglycanopathy and report its disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bushby KMD (1995) Diagnostic criteria for the limb-girdle muscular dystrophies: report of the ENMC consortium on limb-girdle dystrophies. Neuromuscul Disord 5(1):71–74

    Article  CAS  Google Scholar 

  2. Chu ML, Chu ML (2018) The limb – girdle muscular dystrophies : is treatment on the horizon ? Pathogenic genetic variants causing abnormal protein. Neurotherapeutics 849–62

  3. Wicklund MP, Kissel JT (2014) The limb-girdle muscular dystrophies. Neurol Clin 32(3):729–749. https://doi.org/10.1016/j.ncl.2014.04.005

    Article  PubMed  Google Scholar 

  4. Eymard B, Romero NB, Leturcq F, Piccolo F, Carrie A, Jeanpierre M, et al. Primary adhalinopathy ( -sarcoglycanopathy): clinical, pathologic, and genetic correlation in 20 patients with autosomal recessive muscular dystrophy. Neurology. 1997;48(5):1227–34. Available from: http://www.neurology.org/cgi/doi/https://doi.org/10.1212/WNL.48.5.1227

  5. Angelini C, Fanin M, Freda MP, Duggan DJ, Siciliano G, Hoffman EP. The clinical spectrum of sarcoglycanopathies. Neurology. 1999 [cited 2021 Nov 20];52(1):176–9. Available from: https://pubmed.ncbi.nlm.nih.gov/9921870/

  6. Cagliani R, Comi GP, Tancredi L, Sironi M, Fortunate F, Giorda R et al (2001) Primary beta-sarcoglycanopathy manifesting as recurrent exercise-induced myoglobinuria. Neuromuscul Disord 11(4):389–394

    Article  CAS  Google Scholar 

  7. Mongini T, Doriguzzi C, Bosone I, Chiadò-Piat L, Hoffman EP, Palmucci L (2002) Alpha-sarcoglycan deficiency featuring exercise intolerance and myoglobinuria. Neuropediatrics 33(2):109–111

    Article  CAS  Google Scholar 

  8. Krishnaiah B, Lee JJ, Wicklund MP, Kaur D (2016) Young girl presenting with exercise-induced myoglobinuria. Muscle Nerve 54(1):161–164

    Article  CAS  Google Scholar 

  9. Kirschner J, Lochmüller H (2011) Sarcoglycanopathies. Handb Clin Neurol 101:41–46

    Article  Google Scholar 

  10. Oliveira Santos M, Coelho P, Roque R, Conceição I. Very late-onset limb-girdle muscular dystrophy type 2D: a milder form with a normal muscle biopsy. J Clin Neurosci. 2020;72(xxxx):471–3. Available from: https://doi.org/10.1016/j.jocn.2019.12.003

  11. Politano L, Nigro V, Passamano L, Petretta V, Comi LI, Papparella S et al (2001) Evaluation of cardiac and respiratory involvement in sarcoglycanopathies. Neuromuscul Disord 11(2):178–185

    Article  CAS  Google Scholar 

  12. Sveen ML, Thune JJ, Køber L, Vissing J (2008) Cardiac involvement in patients with limb-girdle muscular dystrophy type 2 and Becker muscular dystrophy. Arch Neurol 65(9):1196–1201

    Article  Google Scholar 

  13. Cutroneo G, Bramanti P, Anastasi G, Bruschetta D, Favaloro A, Vermiglio G, et al. Sarcoglycans and gaba(a) receptors in rat central nervous system: an immunohistochemical study. Ital J Anat Embryol = Arch Ital di Anat ed Embriol. 2015;120(2):105–16.

  14. Nishikawa A, Mori-Yoshimura M, Segawa K, Hayashi YK, Takahashi T, Saito Y et al (2016) Respiratory and cardiac function in Japanese patients with dysferlinopathy. Muscle Nerve 53(3):394–401

    Article  Google Scholar 

  15. Alonso-Pérez J, González-Quereda L, Bello L, Guglieri M, Straub V, Gallano P, et al. New genotype-phenotype correlations in a large European cohort of patients with sarcoglycanopathy. Brain. 2020;143(9):2696–708. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32875335

  16. Ervasti JM, Campbell KP (1993) A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol 122(4):809–823

    Article  CAS  Google Scholar 

  17. Ozawa E, Mizuno Y, Hagiwara Y, Sasaoka T, Yoshida M (2005) Molecular and cell biology of the sarcoglycan complex. Muscle Nerve 32(5):563–576

    Article  CAS  Google Scholar 

  18. Khadilkar SV, Singh RK, Katrak SM (2002) Sarcoglycanopathies: a report of 25 cases. Neurol India 50(1):27–32

    Article  CAS  Google Scholar 

  19. Meena AK, Sreenivas D, Sundaram C, Rajasekhar R, Sita JS, Borgohain R, et al. Sarcoglycanopathies: a clinico-pathological study. Neurol India. 2007;55(2):117–21. Available from: http://www.neurologyindia.com/text.asp?2007/55/2/117/32781

  20. Nalini A, Polavarapu K, Sunitha B, Kulkarni S, Gayathri N, Srinivas Bharath MM et al (2015) A prospective study on the immunophenotypic characterization of limb girdle muscular dystrophies 2 in India. Neurol India 63(4):548–560

    Article  Google Scholar 

  21. Sharma MC, Mannan R, Singh NG, Gulati S, Kalra V, Sarkar C (2004) Sarcoglycanopathies: an enigmatic form of muscular dystrophy - a report of 7 cases. Neurol India 52(4):446–449

    CAS  PubMed  Google Scholar 

  22. Nalini A, Gayathri N, Thaha F, Das S, Shylashree S (2010) Sarcoglycanopathy: clinical and histochemical characteristics in 66 patients. Neurol India 58(5):691–696

    Article  CAS  Google Scholar 

  23. Khadilkar SV, Singh RK, Hegde M, Urtizberea A, Love DR, Chong B (2009) Spectrum of mutations in sarcoglycan genes in the Mumbai region of western India: high prevalence of 525del T. Neurol India 57(4):406–410

    Article  Google Scholar 

  24. Chakravorty S, Nallamilli BRR, Khadilkar SV, Singla MB, Bhutada A, Dastur R, et al. Clinical and genomic evaluation of 207 genetic myopathies in the Indian subcontinent. Front Neurol. 2020;11(November).

  25. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26(5):589–595

    Article  Google Scholar 

  26. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303. Available from: http://genome.cshlp.org/cgi/doi/https://doi.org/10.1101/gr.107524.110

  27. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–23. Available from: http://www.nature.com/articles/gim201530

  28. Moore SA, Shilling CJ, Westra S, Wall C, Wicklund MP, Stolle C et al (2006) Limb-girdle muscular dystrophy in the United States. J Neuropathol Exp Neurol 65(10):995–1003

    Article  Google Scholar 

  29. Carrié A, Piccolo F, Leturcq F, de Toma C, Azibi K, Beldjord C et al ( 1997) Mutational diversity and hot spots in the alpha-sarcoglycan gene in autosomal recessive muscular dystrophy (LGMD2D). J Med Genet. 34(6):470–5. https://doi.org/10.1136/jmg.34.6.470

  30. Duggan DJ, Gorospe JR, Fanin M, Hoffman EP, Angelini C. Mutations in the sarcoglycan genes in patients with myopathy. N Engl J Med. 1997;336(9):618–24. Available from: http://www.nejm.org/doi/abs/https://doi.org/10.1056/NEJM199702273360904

  31. Xie Z, Hou Y, Yu M, Liu Y, Fan Y, Zhang W (2019) Clinical and genetic spectrum of sarcoglycanopathies in a large cohort of Chinese patients. Orphanet J Rare Dis. 14;14(1):43. https://doi.org/10.1186/s13023-019-1021-9

  32. Nerakh G, Ranganath P, Murugan S (2021) Next-generation sequencing in a cohort of Asian Indian patients with the Duchenne muscular dystrophy phenotype: diagnostic yield and mutation spectrum. J Pediatr Genet 10(01):023–028

    Article  Google Scholar 

  33. Yu M, Zheng Y, Jin S, Gang Q, Wang Q, Yu P (2017) Mutational spectrum of Chinese LGMD patients by targeted next-generation sequencing. PLoS One. 12;12(4):e0175343. https://doi.org/10.1371/journal.pone.0175343

  34. Bartoli M, Gicquel E, Barrault L, Soheili T, Malissen M, Malissen B (2008) Mannosidase I inhibition rescues the human alpha-sarcoglycan R77C recurrent mutation. Hum Mol Genet. 1;17(9):1214–21. https://doi.org/10.1093/hmg/ddn029

  35. Tétreault M, Srour M, Allyson J, Thiffault I, Loisel L, Robitaille Y (2011) Founder mutation for α-sarcoglycan-LGMD2D in a Magdalen Islands Acadian cluster. Can J Neurol Sci. 38(5):747–52. https://doi.org/10.1017/s0317167100054135

  36. Stehlíková K, Skálová D, Zídková J, Mrázová L, Vondráček P, Mazanec R (2014) Autosomal recessive limb-girdle muscular dystrophies in the Czech Republic. BMC Neurol. 19;14:154. https://doi.org/10.1186/s12883-014-0154-7

  37. Trabelsi M, Kavian N, Daoud F, Commere V, Deburgrave N, Beugnet C et al (2008) Revised spectrum of mutations in sarcoglycanopathies. Eur J Hum Genet 16(7):793–803

    Article  CAS  Google Scholar 

  38. Mojbafan M, Bahmani R, Bagheri SD, Sharifi Z, Zeinali S (2020) Mutational spectrum of autosomal recessive limb-girdle muscular dystrophies in a cohort of 112 Iranian patients and reporting of a possible founder effect. Orphanet J Rare Dis. 14;15(1):14. https://doi.org/10.1186/s13023-020-1296-x

  39. Soheili T, Gicquel E, Poupiot J, N'Guyen L, Le Roy F (2012) Rescue of sarcoglycan mutations by inhibition of endoplasmic reticulum quality control is associated with minimal structural modifications. Hum Mutat. 33(2):429–39. https://doi.org/10.1002/humu.21659

  40. Duclos F, Straub V, Moore SA, Venzke DP, Hrstka RF, Crosbie RH (1998) Williamson R, Campbell KP. Progressive muscular dystrophy in alpha-sarcoglycan-deficient mice. J Cell Biol. 21;142(6):1461–71. https://doi.org/10.1083/jcb.142.6.1461

  41. Monies D, Alhindi HN, Almuhaizea MA, Abouelhoda M, Alazami AM, Goljan E (2016) A first-line diagnostic assay for limb-girdle muscular dystrophy and other myopathies. Hum Genomics. 27;10(1):32. https://doi.org/10.1186/s40246-016-0089-8

  42. Bönnemann CG, Wong J, Hamida C Ben, Hamida M Ben, Hentati F, Kunkel LM. LGMD 2E in Tunisia is caused by a homozygous missense mutation in β-sarcoglycan exon 3. Neuromuscul Disord. 1998;8(3–4):193–7.

  43. Ganapathy A, Mishra A, Soni MR, Kumar P, Sadagopan M, Kanthi AV et al (2019) Multi-gene testing in neurological disorders showed an improved diagnostic yield: data from over 1000 Indian patients. J Neurol 266(8):1919–1926. https://doi.org/10.1007/s00415-019-09358-1

    Article  PubMed  Google Scholar 

  44. Semplicini C, Vissing J, Dahlqvist JR, Stojkovic T, Bello L, Witting N, et al. Clinical and genetic spectrum in limb-girdle muscular dystrophy type 2E. Neurology. 2015;84(17):1772–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25862795

  45. Balci B, Wilichowski E, Haliloğlu G, Talim B, Aurino S, Kremer E (2004) Beta-sarcoglycan gene mutations in Turkey. Acta Myol. 23(3):154–8

  46. Yiş U, Diniz G, Hazan F, Daimagüler HS, Baysal BT, Baydan F (2018) Childhood onset limb girdle muscular dystrophies in the Aegean part of Turkey. Acta Myol. 1;37(3):210–220

  47. Duncan DR, Kang PB, Rabbat JC, Briggs CE, Lidov HG, Darras BT (2006) A novel mutation in two families with limb-girdle muscular dystrophy type 2C. Neurology. 11;67(1):167–9. https://doi.org/10.1212/01.wnl.0000223600.78363

  48. Al-Zaidy SA, Malik V, Kneile K, Rosales XQ, Gomez AM, Lewis S (2015) A slowly progressive form of limb-girdle muscular dystrophy type 2C associated with founder mutation in the SGCG gene in Puerto Rican Hispanics. Mol Genet Genomic Med. 3(2):92–8. https://doi.org/10.1002/mgg3.125

  49. DiCapua D, Patwa H (2014) Puerto Rican founder mutation G787A in the SGCG gene: a case report of 2 siblings with LGMD 2C. J Clin Neuromuscul Dis. 15(3):105–7. https://doi.org/10.1097/CND.0000000000000018

  50. Reddy HM, Cho KA, Lek M, Estrella E, Valkanas E, Jones MD (2017) The sensitivity of exome sequencing in identifying pathogenic mutations for LGMD in the United States. J Hum Genet. 62(2):243–252. https://doi.org/10.1038/jhg.2016.116

  51. Moreira ES, Vainzof M, Marie SK, Nigro V, Zatz M, Passos-Bueno MR (1998) A first missense mutation in the delta sarcoglycan gene associated with a severe phenotype and frequency of limb-girdle muscular dystrophy type 2F (LGMD2F) in Brazilian sarcoglycanopathies. J Med Genet. 35(11):951–3. https://doi.org/10.1136/jmg.35.11.951

  52. Manzini MC, Tambunan DE, Hill RS, Yu TW, Maynard TM, Heinzen EL (2012) Exome sequencing and functional validation in zebrafish identify GTDC2 mutations as a cause of Walker-Warburg syndrome. Am J Hum Genet. 7;91(3):541–7. https://doi.org/10.1016/j.ajhg.2012.07.009

  53. Houlden H, Laura M, Ginsberg L, Jungbluth H, Robb SA, Blake J (2009) The phenotype of Charcot-Marie-Tooth disease type 4C due to SH3TC2 mutations and possible predisposition to an inflammatory neuropathy. Neuromuscul Disord. 19(4):264 9. https://doi.org/10.1016/j.nmd.2009.01.006

  54. Varley TL, Bourque PR, Baker SK (2015) Phenotypic variability of CMT4C in a French Canadian kindred. Muscle Nerve. 52(3):444–9. https://doi.org/10.1002/mus.24640

  55. Mah JK, Korngut L, Fiest KM, Dykeman J, Day LJ, Pringsheim T et al (2015) A systematic review and meta-analysis on the epidemiology of the muscular dystrophies. Can J Neurol Sci 43(1):163–177

    Article  Google Scholar 

  56. Angelini C, Fanin M (2016) Pathogenesis, clinical features and diagnosis of sarcoglycanopathies. Expert Opin Orphan Drugs 4(12):1239–1251. https://doi.org/10.1080/21678707.2016.1256769

    Article  Google Scholar 

  57. Fanin M, Duggan DJ, Mostacciuolo ML, Martinello F, Freda MP, Sorarù G et al (1997) Genetic epidemiology of muscular dystrophies resulting from sarcoglycan gene mutations. J Med Genet 34(12):973–977

    Article  CAS  Google Scholar 

  58. Mahmood OA, Jiang XM (2014) Limb-girdle muscular dystrophies: where next after six decades from the first proposal (Review). Mol Med Rep 9(5):1515–1532

    Article  CAS  Google Scholar 

  59. Norwood FLM, Harling C, Chinnery PF, Eagle M, Bushby K, Straub V (2009) Prevalence of genetic muscle disease in Northern England: in-depth analysis of a muscle clinic population. Brain 132(11):3175–3186

    Article  Google Scholar 

  60. Passos-Bueno MR, Vainzof M, Moreira ES, Zatz M (1999) Seven autosomal recessive limb-girdle muscular dystrophies in the Brazilian population: from LGMD2A to LGMD2G. Am J Med Genet 82(5):392–398

    Article  CAS  Google Scholar 

  61. Lo HP, Cooper ST, Evesson FJ, Seto JT, Chiotis M, Tay V et al (2008) Limb-girdle muscular dystrophy: diagnostic evaluation, frequency and clues to pathogenesis. Neuromuscul Disord 18(1):34–44

    Article  Google Scholar 

  62. Moreira ES, Vainzof M, Suzuki OT, Pavanello RC, Zatz M, Passos-Bueno MR. Genotype-phenotype correlations in 35 Brazilian families with sarcoglycanopathies including the description of three novel mutations. J Med Genet. 2003;40(2).

  63. Pegoraro E, Hoffman EP (1993) Limb-girdle muscular dystrophy overview – RETIRED CHAPTER, FOR HISTORICAL REFERENCE ONLY. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, et al (eds) Seattle (WA)

  64. Tasca G, Monforte M, Díaz-Manera J, Brisca G, Semplicini C, D’Amico A et al (2018) MRI in sarcoglycanopathies: a large international cohort study. J Neurol Neurosurg Psychiatry 89(1):1–6

    Article  Google Scholar 

  65. Dalichaouche I, Sifi Y, Roudaut C, Sifi K, Hamri A, Rouabah L et al (2017) γ-Sarcoglycan and dystrophin mutation spectrum in an Algerian cohort. Muscle Nerve 56(1):129–135

    Article  CAS  Google Scholar 

  66. Piccolo F, Jeanpierre M, Leturcq F, Dodé C, Azibi K, Toutain A et al (1996) A founder mutation in the γ-sarcoglycan gene of Gypsies possibly predating their migration out of India. Hum Mol Genet 5(12):2019–2022

    Article  CAS  Google Scholar 

  67. Othmane KB, Speer MC, Stauffer J, Blel S, Middleton L, Hamida BC et al (1995) Evidence for linkage disequilibrium in chromosome 13-linked Duchenne-like muscular dystrophy (LGMD2C) [1]. Am J Hum Genet 57(3):732–734

    PubMed  PubMed Central  Google Scholar 

  68. Alavi A, Esmaeili S, Nilipour Y, Nafissi S, Tonekaboni SH, Zamani G, et al. LGMD2E is the most common type of sarcoglycanopathies in the Iranian population. J Neurogenet. 2017;31(3):161–9. Available from: https://www.tandfonline.com/doi/full/https://doi.org/10.1080/01677063.2017.1346093

  69. Acuna-Hidalgo R, Bo T, Kwint MP, Van De Vorst M, Pinelli M, Veltman JA et al (2015) Post-zygotic point mutations are an underrecognized source of de novo genomic variation. Am J Hum Genet 97(1):67–74. https://doi.org/10.1016/j.ajhg.2015.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kuhn M, Gläser D, Joshi PR, Zierz S, Wenninger S, Schoser B et al (2016) Utility of a next-generation sequencing-based gene panel investigation in German patients with genetically unclassified limb-girdle muscular dystrophy. J Neurol 263(4):743–750

    Article  CAS  Google Scholar 

  71. Melacini P, Fanin M, Duggan DJ, Freda MP, Berardinelli A, Danieli GA, et al. Heart involvement in muscular dystrophies due to. Muscle Nerve. 1999;22(April):473–9. Available from: http://doi.wiley.com/https://doi.org/10.1002/%28SICI%291097-4598%28199904%2922%3A4%3C473%3A%3AAID-MUS8%3E3.0.CO%3B2-5

Download references

Acknowledgements

The authors thank the patients and their families in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atchayaram Nalini.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bardhan, M., Anjanappa, R.M., Polavarapu, K. et al. Clinical, genetic profile and disease progression of sarcoglycanopathies in a large cohort from India: high prevalence of SGCB c.544A > C. Neurogenetics 23, 187–202 (2022). https://doi.org/10.1007/s10048-022-00690-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-022-00690-9

Keywords

Navigation