Skip to main content

Advertisement

Log in

Wood Protection for Carbon Sequestration — a Review of Existing Approaches and Future Directions

  • Wood Structure and Function (A Koubaa, Section Editor)
  • Published:
Current Forestry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Wood can be protected from biological deterioration thereby prolonging its longevity and contribution to carbon sequestration. Wood protection is only useful if it is inexpensive and can be done at scale, and with minimal adverse environmental impacts. It is difficult to meet all these criteria but some approaches come close. They are described in this paper with an emphasis on new research findings and directions to inform current research on carbon sequestration by wood.

Recent Findings

Research on wood protection with the exception of nano-wood preservatives is gradually shifting away from the use of synthetic biocidal chemical treatments to the use of naturally durable wood or protectants and treatments that deny organisms access to wood (barriers) or restrict essential requirements for their growth. The latter approach is attracting attention, and welcome new entrants to the field of wood protection, because of its potential to enhance carbon sequestration at a meaningful scale.

Summary

We expect increasing regulatory and cost pressure on traditional approaches to wood protection using synthetic biocides and an acceleration of the trend evident in the recent past of protecting wood by modifying its molecular structure to exclude water, or growing trees in plantations that produce naturally durable wood. The strengthening of this trend will create many opportunities to research the properties and applications of ‘new’ durable wood products. In addition, we predict a major reorientation of the field to develop, test and model novel approaches to wood protection for atmospheric carbon sequestration. We conclude that future work will likely include research on protection of: (1) novel cellulose or lignin composites used as replacements for plastic; (2) massive timber composites used in tall buildings and other large infrastructure; (3) huge quantities of low-quality wood used specifically for carbon containment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Locosselli GM. The cambium activity in a changing world. Trees. 2018;32:1–2.

    Article  Google Scholar 

  2. Fahmy TY, Fahmy Y, Mobarak F, El-Sakhawy M, Abou-Zeid RE. Biomass pyrolysis: past, present, and future. Environ Dev Sustain. 2020;22:17–32.

    Article  Google Scholar 

  3. Ulyshen MD. Wood decomposition as influenced by invertebrates. Biol Rev. 2016;91:70–85.

    Article  Google Scholar 

  4. • Seibold S, Rammer W, Hothorn T, Seidl R, Ulyshen MD, Lorz J, Cadotte MW, Lindenmayer DB, Adhikari YP, Aragón R, Bae S. The contribution of insects to global forest deadwood decomposition. Nature. 2021;597:77–81. A landmark study that puts into perspective the CO2 emissions arising from biological deterioration of wood and those from burning of fossil fuels.

    Article  CAS  Google Scholar 

  5. Arrhenius S. On the influence of carbonic acid in the air upon the temperature of the ground. London Edinburgh Dublin Philos Mag J Sci. 1896;41:237–76.

    Article  CAS  Google Scholar 

  6. Franta B. Early oil industry knowledge of CO2 and global warming. Nat Clim Chang. 2018;8:1024–5.

    Article  Google Scholar 

  7. Shu FH. Stopping and reversing climate change. Resonance. 2019;24:181–200.

    Article  Google Scholar 

  8. Fung IY, Doney SC, Lindsay K, John J. Evolution of carbon sinks in a changing climate. Proc Natl Acad Sci U S A. 2005;102:11201–6.

    Article  CAS  Google Scholar 

  9. Scalisi F, Sposito C. Measure the embodied energy in building materials: an eco-sustainable approach for construction. In: Sayigh A, editor. Renewable energy and sustainable buildings. Springer: Cham; 2020. p. 245–55.

    Chapter  Google Scholar 

  10. • Aldrich M. From forest conservation to market preservation: invention and diffusion of wood-preserving technology, 1880–1939. Technol Cult. 2006;47:311–40. A well-written article that describes through the lens of railway tie industry the evolution of wood protection technology that is still used today.

    Article  Google Scholar 

  11. Goodell B. Fungi Involved in the biodeterioration and bioconversion of lignocellulose substrates. In: Benz JP, Schipper K, editors. Genetics and biotechnology. The mycota (A comprehensive treatise on fungi as experimental systems for basic and applied research), vol. 2. Springer: Cham; 2020. p. 369–97.

    Google Scholar 

  12. Kirker GT. Wood decay fungi. In: Wiley online library. Wiley: Chichester; 2018. p. 1–6. https://doi.org/10.1002/9780470015902.a0027655. Accessed 4 November 2021.

  13. Rust MK, Su NY. Managing social insects of urban importance. Ann Rev Entomol. 2012;57:355–75.

    Article  CAS  Google Scholar 

  14. Hlásny T, König L, Krokene P, Lindner M, Montagné-Huck C, Müller J, Qin H, Raffa KF, Schelhaas MJ, Svoboda M, Viiri H. Bark beetle outbreaks in Europe: state of knowledge and ways forward for management. Cur For Rep. 2021;7:138–65.

    Google Scholar 

  15. Barrows EM. Results of a survey of damage caused by the carpenter bee Xylocopa virginica (Hymenoptera: Anthophoridae). Proc Entomol Soc Wash. 1980;82:44–7.

    Google Scholar 

  16. Hansen LD, Klotz JH. Carpenter ants of the United States and Canada. Ithaca: Cornell University Press; 2019.

    Google Scholar 

  17. Department Navy. Marine biology operational handbook: inspections, repair and preservation of waterfront structures. Washington DC: Bureau of Yards and Docks; 1965.

    Google Scholar 

  18. Wright HC. Distribution of woodpecker activity relative to wooden utility structure usage in the southeastern United States. Mississippi State University (Masters dissertation), U.S.A.; 2021.

  19. Boyce JS. Forest Pathology. New York: McGraw-Hill; 1961.

    Google Scholar 

  20. Qasim U, Osman AI, Ala’a H, Farrell C, Al-Abri M, Ali M, Vo DV, Jamil F, Rooney DW. Renewable cellulosic nanocomposites for food packaging to avoid fossil fuel plastic pollution: a review. Environ Chem Lett. 2021;19:613–41.

    Article  CAS  Google Scholar 

  21. Koziróg A, Brycki B, Olejnik K, Wysocka-Robak A, Dębska-Winkler P. Cellulose products modified with monomeric and gemini surfactants: antimicrobial aspects. Cellulose. 2019;26:5559–70.

    Article  CAS  Google Scholar 

  22. Emam HE. Antimicrobial cellulosic textiles based on organic compounds. 3 Biotech. 2019;9:1–4.

    Article  Google Scholar 

  23. Naumova EI, Zharova GK, Chistova TY, Varshavskii AA, Ivlev YF. Concentration and size distribution of plant fiber in the digestive tract of muroid rodents. Biol Bull. 2017;44:517–23.

    Article  Google Scholar 

  24. Delahaye P. Rats, mice and humans. Linguist Front. 2021;4:44–52.

    Article  Google Scholar 

  25. Kamminga J. Wood artefacts: a checklist of plant species utilised by Australian Aborigines. Aust Aborig Stud. 1988;2:26–59.

    Google Scholar 

  26. Cywa K. Trees and shrubs used in medieval Poland for making everyday objects. Veg Hist Archaeobot. 2018;27:111–36.

    Article  Google Scholar 

  27. Evans P. Emerging technologies in wood protection. For Prod J. 2003;53:1–14.

    Google Scholar 

  28. Li Y, Apiolaza LA, Altaner C. Genetic variation in heartwood properties and growth traits of Eucalyptus bosistoana. Eur J For Res. 2018;137:565–72.

    Article  Google Scholar 

  29. Bush D, McCarthy K, Meder R. Genetic variation of natural durability traits in Eucalyptus cladocalyx (sugar gum). Ann For Sci. 2011;68:1057–66.

    Article  Google Scholar 

  30. Neto PNM, Paes JB, Oliveira JT, da Silva JG, Coelho JC, Ribeiro LD. Durability of Eucalypts wood in soil bed and field decay tests. Maderas Cienc Tecnol. 2020;22:447–56.

    Google Scholar 

  31. Spinelli R, Lombardini C, Aminti G, Magagnotti N. Efficient debarking to increase value recovery in small-scale forestry operations. Small-scale For. 2018;17:377–92.

    Article  Google Scholar 

  32. Moya R, Tenorio C. Wood properties and their variations in teak. In: Ramasamy Y, Galeano E, Win TT, editors. The teak genome. Compendium of plant genomes. Springer: Cham; 2021. p. 103–37.

    Google Scholar 

  33. Anda RR, Koch G, Richter HG, Talavera FJ, Guzmán JA, Satyanarayana KG. Formation of heartwood, chemical composition of extractives and natural durability of plantation-grown teak wood from Mexico. Holzforschung. 2019;73:547–57.

    Article  CAS  Google Scholar 

  34. Rizanti DE, Darmawan W, George B, Merlin A, Dumarcay S, Chapuis H, Gérardin C, Gelhaye E, Raharivelomanana P, Sari RK, Syafii W. Comparison of teak wood properties according to forest management: short versus long rotation. Ann For Sci. 2018;75:1–2.

    Article  Google Scholar 

  35. Park Y, Jang SK, Park JH, Yang SY, Chung H, Han Y, Chang YS, Choi IG, Yeo H. Changes of major chemical components in larch wood through combined treatment of drying and heat treatment using superheated steam. J Wood Sci. 2017;63:635–43.

    Article  CAS  Google Scholar 

  36. Priadi T, Suharjo AA, Karlinasari L. Dimensional stability and colour change of heat-treated young teak wood. Int Wood Prod J. 2019;10:119–25.

    Article  Google Scholar 

  37. Lukmandaru G, Susanti D, Widyorini R. Chemical properties of modified mahogany wood by heat treatment. JPK Wallacea. 2018;7:37–46.

    Google Scholar 

  38. Ra JB, Kim KB, Leem KH. Effect of heat treatment conditions on color change and termite resistance of heat-treated wood. J Korean Wood Sci Technol. 2012;40:370–7.

    Article  Google Scholar 

  39. Acosta AP, Delucis RA, Amico SC, Gatto DA. Fast-growing pine wood modified by a two-step treatment based on heating and in situ polymerization of polystyrene. Constr Build Mater. 2021;302:124422.

    Article  CAS  Google Scholar 

  40. Mubarok M, Militz H, Darmawan IW, Hadi YS, Dumarçay S, Gérardin P. Resistance against subterranean termite of beech wood impregnated with different derivatives of glycerol or polyglycerol and maleic anhydride followed by thermal modification: a field test study. Eur J Wood Wood Prod. 2020;78:387–92.

    Article  CAS  Google Scholar 

  41. Kamdem DP, Sean ST. The durability of phenolic-bonded particleboards made of decay-resistant black locust and nondurable aspen. For Prod J. 1994;44:65–8.

    CAS  Google Scholar 

  42. Evans PD, Dimitriades S, Cunningham RB, Donnelly CF. Medium density fibreboard manufactured from blends of white cypress pine and non-durable wood species shows increased resistance to attack by the subterranean termite Coptotermes lacteus. Holzforschung. 2000;54:585–90.

    Article  CAS  Google Scholar 

  43. Feng J, Dong P, Li R, Li C, Xie X, Shi Q. Effects of wood fiber properties on mold resistance of wood polypropylene composites. Int Biodeterior Biodegrad. 2019;140:152–9.

    Article  CAS  Google Scholar 

  44. • Hill CAS. Wood modification: chemical, thermal and other processes. Chichester: Wiley; 2006. Best introduction to non-biocidal methods of modifying wood to improve its resistance to biological deterioration.

  45. Hill C, Altgen M, Rautkari L. Thermal modification of wood—a review: chemical changes and hygroscopicity. J Mater Sci. 2021;7:1–34.

    Google Scholar 

  46. • Jones D, Sandberg D. A review of wood modification globally–updated findings from COST FP1407. Interdiscip Perspect Built Environ. 2020;1:1–31. Updates data in Hill and surveys current commercial landscape for wood modification technology.

    Article  Google Scholar 

  47. Stefanowski B, Spear M, Pitman A. Review of the use of PF and related resins for modification of solid wood. In: Spear M (Ed.) Timber 2018. Proceedings Wood Technology Society Conference, 26–27 June, London, UK, pp 165–179.

  48. Matsunaga M, Kataoka Y, Matsunaga H, Matsui H. A novel method of acetylation of wood using supercritical carbon dioxide. J Wood Sci. 2010;56:293–8.

    Article  CAS  Google Scholar 

  49. Matsunaga M, Hewage DC, Kataoka Y, Ishikawa A, Kobayashi M, Kiguchi M. Acetylation of wood using supercritical carbon dioxide. J Trop For Sci. 2016;1:132–8.

    Google Scholar 

  50. Meints T, Hansmann C, Müller M, Liebner F, Gindl-Altmutter W. Highly effective impregnation and modification of spruce wood with epoxy-functional siloxane using supercritical carbon dioxide solvent. Wood Sci Technol. 2018;52:1607–20.

    Article  CAS  Google Scholar 

  51. Franke T, Herold N, Buchelt B, Pfriem A. The potential of phenol–formaldehyde as plasticizing agent for moulding applications of wood veneer: two-dimensional and three-dimensional moulding. Eur J Wood Wood Prod. 2018;76(5):1409–16.

    Article  CAS  Google Scholar 

  52. Sandak A, Sandak J, Brzezicki M, Kutnar A. Biomaterials for building skins. In: Bio-based building skin. Springer: Singapore; 2019. p. 27–64.

  53. Hill C, Hughes M, Gudsell D. Environmental impact of wood modification. Coatings. 2021;11:366.

    Article  CAS  Google Scholar 

  54. Tellnes LG, Alfredsen G, Flæte PO, Gobakken LR. Effect of service life aspects on carbon footprint: a comparison of wood decking products. Holzforschung. 2020;74:426–33.

    Article  CAS  Google Scholar 

  55. Barbero-López A, Akkanen J, Lappalainen R, Peräniemi S, Haapala A. Bio-based wood preservatives: their efficiency, leaching and ecotoxicity compared to a commercial wood preservative. Sci Total Environ. 2021;753:142013.

    Article  CAS  Google Scholar 

  56. Xing D, Magdouli S, Zhang J, Koubaa A. Microbial remediation for the removal of inorganic contaminants from treated wood: recent trends and challenges. Chemosphere. 2020;258:127429.

    Article  CAS  Google Scholar 

  57. Brient JA, Manning MJ, Freeman MH. Copper naphthenate-protecting America’s infrastructure for over 100 years and its potential for expanded use in Canada and Europe. Wood Mater Sci Eng. 2020;15:368–76.

    Article  CAS  Google Scholar 

  58. Besserer A, Troilo S, Girods P, Rogaume Y, Brosse N. Cascading recycling of wood waste: a review. Polymers. 2021;13:1752.

    Article  CAS  Google Scholar 

  59. Leturcq P. Wood preservation (carbon sequestration) or wood burning (fossil-fuel substitution), which is better for mitigating climate change? Ann For Sci. 2014;71:117–24.

    Article  Google Scholar 

  60. Sparrow R. Revolutionary and familiar, inevitable and precarious: rhetorical contradictions in enthusiasm for nanotechnology. Nanoethics. 2007;1:57–68.

    Article  Google Scholar 

  61. Matsunaga H, Kiguchi M, Roth B, Evans PD. Visualisation of metals in pine treated with preservative containing copper and iron nanoparticles. IAWA J. 2008;29:387–96.

    Article  Google Scholar 

  62. Evans P, Matsunaga H, Kiguchi M. Large-scale application of nanotechnology for wood protection. Nat Nanotechnol. 2008;3:577.

    Article  CAS  Google Scholar 

  63. Borges CC, Tonoli GH, Cruz TM, Duarte PJ, Junqueira TA. Nanoparticles-based wood preservatives: the next generation of wood protection? Cerne. 2018;24:397–407.

    Article  Google Scholar 

  64. Teng TJ, Arip MN, Sudesh K, Nemoikina A, Jalaludin Z, Ng EP, Lee HL. Conventional technology and nanotechnology in wood preservation: a review. BioResources. 2018;13:9220–52.

    Article  Google Scholar 

  65. Papadopoulos AN, Bikiaris DN, Mitropoulos AC, Kyzas GZ. Nanomaterials and chemical modifications for enhanced key wood properties: a review. Nanomaterials. 2019;9:607.

    Article  CAS  Google Scholar 

  66. Can A, Palanti S, Sivrikaya H, Hazer B, Stefanı F. Physical, biological and chemical characterisation of wood treated with silver nanoparticles. Cellulose. 2019;26:5075–84.

    Article  CAS  Google Scholar 

  67. Usmani SM, Plarre R, Hübert T, Kemnitz E. Termite resistance of pine wood treated with nano metal fluorides. Eur J Wood Wood Prod. 2020;78:493–9.

    Article  CAS  Google Scholar 

  68. Merk V, Chanana M, Keplinger T, Gaan S, Burgert I. Hybrid wood materials with improved fire retardance by bio-inspired mineralisation on the nano-and submicron level. Green Chem. 2015;17:1423–8.

    Article  CAS  Google Scholar 

  69. Humphrey DG. The chemistry of chromated copper arsenate wood preservatives. Rev Inorg Chem. 2002;22:1–40.

    Article  CAS  Google Scholar 

  70. Freeman MH, McIntyre CR. Copper-based wood preservatives. For Prod J. 2008;58:6–27.

    CAS  Google Scholar 

  71. Civardi C, Schubert M, Fey A, Wick P, Schwarze FW. Micronized copper wood preservatives: efficacy of ion, nano, and bulk copper against the brown rot fungus Rhodonia placenta. PLoS One. 2015;10:e0142578.

    Article  CAS  Google Scholar 

  72. Civardi C, Schlagenhauf L, Kaiser JP, Hirsch C, Mucchino C, Wichser A, Wick P, Schwarze FW. Release of copper-amended particles from micronized copper-pressure-treated wood during mechanical abrasion. J Nanobiotechnol. 2016;14:1–10.

    Article  CAS  Google Scholar 

  73. Zhang J, Tham P. Method of preparing copper-containing wood preserving compositions. US16/114,675. (Patent). 2019.

  74. Narankhuu B. Are natural resources a curse or a blessing for Mongolia? Miner Econ. 2018;31:171–7.

    Article  Google Scholar 

  75. Nägeli CV. On the oligodynamic phenomenon in living cells. Denkschr Schweiz Naturforsch Ges. 1893;33:174–82.

    Google Scholar 

  76. Sawyer JE, Coxe PG. Mollusk repellant and methods of water treatment. US9,527,758. (Patent). 2016.

  77. Kumar NS, Suvarna RP, Naidu KCB, Banerjee P, Ratnamala A, Manjunatha H. A review on biological and biomimetic materials and their applications. Appl Phys A. 2020;126:1–8.

    CAS  Google Scholar 

  78. Southwell CR, Bultman JD. Marine borer resistance of untreated woods over long periods of immersion in tropical waters. Biotropica. 1971;1:81–107.

    Article  Google Scholar 

  79. Evans PD, Matsunaga H, Feng D, Turner M, Henley RW, Kewish CM. Inorganic compounds in the marine borer resistant timber turpentine (Syncarpia glomulifera). J Wood Chem Technol. 2021;41:185–97.

    Article  CAS  Google Scholar 

  80. Manners GD, Jurd L. New natural products from marine borer resistant woods. A review. J Agric Food Chem. 1977;25:726–30.

    Article  CAS  Google Scholar 

  81. Jurd L, Manners GD. Wood extractives as models for the development of new types of pest control agents. J Agric Food Chem. 1980;28:183–8.

    Article  CAS  Google Scholar 

  82. Bultman JD, Jurd L, Turner RD. Control of marine borer attack on wood. US4,012,529. (Patent). 1977.

  83. Treu A, Zimmer K, Brischke C, Larnoy E, Gobakken LR, Aloui F, Cragg SM, Flæte PO, Humar M, Westin M, Borges L. Durability and protection of timber structures in marine environments in Europe: an overview. BioResources. 2019;14:10161–84.

    Article  Google Scholar 

  84. Jabeen F, Hussain A, Manzoor M, Younis T, Rasul A, Qazi JI. Potential of bacterial chitinolytic, Stenotrophomonas maltophilia, in biological control of termites. Egypt J Biol Pest Control. 2018;28:86. https://doi.org/10.1186/s41938-018-0092-6.

    Article  Google Scholar 

  85. Kadir R, Hassan B. Toxicity and repellent effects of wood extractives of five Malaysian wood species on Asian subterranean termite Coptotermes gestroi Wasmann. Eur J Wood Wood Prod. 2020;78:1249–62.

    Article  CAS  Google Scholar 

  86. Singh T, Singh AP. A review on natural products as wood protectant. Wood Sci Technol. 2012;46:851–70.

    Article  CAS  Google Scholar 

  87. Broda M. Natural compounds for wood protection against fungi—a review. Molecules. 2020;25:3538.

    Article  CAS  Google Scholar 

  88. Landsberger B, Frauendorf H, Adler C, Plarre R. Capability and limitations of anoxic treatments for protecting museum collections. In: Proceedings from the 4th International Conference on Integrated Pest Management (IPM) for Cultural Heritage. 21–23 May 2019. Stockholm. Sweden. 2019. p. 202–210.

  89. High KE, Penkman KE. A review of analytical methods for assessing preservation in waterlogged archaeological wood and their application in practice. Herit Sci. 2020;8:1–33.

    Article  Google Scholar 

  90. Walsh-Korb Z, Janeček ER, Jones M, Averous L, Scherman OA. New consolidants for the conservation of archeological wood. In: Nevin A, Sawicki M, editors. Heritage wood. Cultural heritage science. Springer: Cham; 2019. p. 65–77.

    Chapter  Google Scholar 

  91. Zhilin M, Savchenko S, Hansen S, Heussner KU, Terberger T. Early art in the Urals: new research on the wooden sculpture from Shigir. Antiquity. 2018;92:334–50.

    Article  Google Scholar 

  92. Koivisto S, Latvakoski N, Perttola W. Out of the peat: preliminary geophysical prospection and evaluation of the mid-Holocene stationary wooden fishing structures in Haapajärvi, Findland. J Field Archaeol. 2018;43:166–80.

    Article  Google Scholar 

  93. Tintner J, Smidt E, Aumüller C, Martin P, Ottner F, Wriessnig K, Reschreiter H. Taphonomy of prehistoric bark in a salt environment at the archaeological site in Hallstatt, Upper Austria–an analytical approach based on FTIR spectroscopy. Vib Spectrosc. 2018;97:39–43.

    Article  CAS  Google Scholar 

  94. Broda M, Curling SF, Spear MJ, Hill CA. Effect of methyltrimethoxysilane impregnation on the cell wall porosity and water vapour sorption of archaeological waterlogged oak. Wood Sci Technol. 2019;53:703–26.

    Article  CAS  Google Scholar 

  95. Wakefield JM, Hampe R, Gillis RB, Sitterli A, Adams GG, Kutzke H, Heinze T, Harding SE. Aminoethyl substitution enhances the self-assembly properties of an aminocellulose as a potential archaeological wood consolidant. Eur Biophys J. 2020;49:791–8.

    Article  CAS  Google Scholar 

  96. Cavallaro G, Lazzara G, Milioto S, Parisi F, Ruisi F. Nanocomposites based on esterified colophony and halloysite clay nanotubes as consolidants for waterlogged archaeological woods. Cellulose. 2017;24:3367–76.

    Article  CAS  Google Scholar 

  97. • Ximenes FA, Kathuria A, Barlaz MA, Cowie AL. Carbon dynamics of paper, engineered wood products and bamboo in landfills: evidence from reactor studies. Carbon Balance Manage. 2018;13:27. The latest in a series of papers that shows that CO2 emissions resulting from the decay of wood in landfill have been overestimated with implications for carbon accounting and development of sequestration technology.

    Article  CAS  Google Scholar 

  98. O’Dwyer J, Walshe D, Byrne KA. Wood waste decomposition in landfills: an assessment of current knowledge and implications for emissions reporting. Waste Manage. 2018;73:181–8.

    Article  Google Scholar 

  99. Liesegang M, Gee CT. Silica entry and accumulation in standing trees in a hot-spring environment: cellular pathways, rapid pace and fossilization potential. Palaeontology. 2020;63:651–60.

    Article  Google Scholar 

  100. Ebert TA, Zedler PH. Decomposition of ocotillo (Fouquieria splendens) wood in the Colorado Desert of California. Am Midl Nat. 1984;111:143–7.

    Article  Google Scholar 

  101. Held BW, Jurgens JA, Duncan SM, Farrell RL, Blanchette RA. Assessment of fungal diversity and deterioration in a wooden structure at New Harbor, Antartica. Polar Biol. 2006;29:526–31.

    Article  Google Scholar 

  102. • Brischke C, Alfredsen G. Wood-water relationships and their role for wood susceptibility to fungal decay. Appl Microbiol Biotechnol. 2020;104:3781–95. A good introduction that explains the important role that water plays in facilitationg microbial deterioration of wood, and the research gaps in the field.

    Article  CAS  Google Scholar 

  103. Hassan B, Ahmed S, Kirker G, Mankowski ME, ulHaq MM. Synergistic effect of heartwood extracts in combination with linseed oil as wood preservatives against subterranean termite Heterotermes indicola (Blattodea: Rhinotermitidae). Environ Sci Pollut Res. 2020;27:3076–85.

    Article  CAS  Google Scholar 

  104. Lötter BT, Evans PD. Sprayable hot melt waxes as water repellents for oriented strand board. Int Wood Prod J. 2019;10:102–10.

    Article  Google Scholar 

  105. IAQ. Indoor air quality. Moisture control guidance for building design, construction and maintenance. Environmental Protection Authority: Wash. D.C., U.S.A. EPA 402-F-13053; 2013. p. 1–144.

  106. McNulty, P. Rotting of cross-laminated timber (CLT) roof panels. Cross-UK. Report 852. 2019.

  107. • Churkina G, Organschi A, Reyer CP, Ruff A, Vinke K, Liu Z, Reck BK, Graedel TE, Schellnhuber HJ. Buildings as a global carbon sink. Nat Sustain. 2020;3:269–76. A good introduction to the potential of wood construction to act as an important sink for carbon.

    Article  Google Scholar 

  108. Cappellazzi J, Konkler MJ, Sinha A, Morrell JJ. Potential for decay in mass timber elements: a review of the risks and identifying possible solutions. Wood Mater Sci Eng. 2020;15:351–60.

    Article  Google Scholar 

  109. Oliveira GL, de Oliveira FL, Brazolin S. Wood preservation for preventing biodeterioration of cross laminated timber (CLT) panels assembled in tropical locations. Procedia Struct Integr. 2018;11:242–9.

    Article  Google Scholar 

  110. Palma P, Steiger R. Structural health monitoring of timber structures–review of available methods and case studies. Constr Build Mater. 2020;248:118528.

    Article  Google Scholar 

  111. Stienen T, Schmidt O, Huckfeldt T. Wood decay by indoor basidiomycetes at different moisture and temperature. Holzforschung. 2014;68:9–15.

    Article  CAS  Google Scholar 

  112. Trematerra P, Pinniger D. Museum pests–cultural heritage pests. In: Athanassiou C, Arthur F, editors. Recent advances in stored product protection. Berlin: Springer; 2018. p. 229–60.

    Chapter  Google Scholar 

  113. Giardina CP. Advancing our understanding of woody debris in tropical forests. Ecosystems. 2019;22:1173–5.

    Article  Google Scholar 

  114. Findlay WPK. Studies in the physiology of wood-destroying fungi. I. The effect of nitrogen content upon the rate of decay of timber. Ann Bot. 1934;48:109–17.

    Article  CAS  Google Scholar 

  115. Nicholas DD. Effect of nitrogen and vitamins on the decay rate of pine sapwood exposed above ground. For Prod J. 2021;71:39–41.

    CAS  Google Scholar 

  116. Watkinson SC, Eastwood DC. Serpula lacrymans, wood and buildings. Adv Appl Microbiol. 2012;78:121–49.

    Article  CAS  Google Scholar 

  117. Baechler RH. Improving wood’s durability through chemical modification. For Prod J. 1959;9:166–71.

    CAS  Google Scholar 

  118. Highley TL. Decay resistance of four wood species treated to destroy thiamine. Phytopathology. 1970;60:1660–1.

    Article  CAS  Google Scholar 

  119. • Highley TL. Source of increased decay resistance in sodium hydroxide-and ammonia-treated wood. Phytopathology. 1973;63:57–61. Key publications on thiamine destruction for wood protection.

    Article  CAS  Google Scholar 

  120. Jorge FC, Pereira C, Ferreira JM. Wood-cement composites: a review. Holz Roh Werks. 2004;62:370–7.

    Article  CAS  Google Scholar 

  121. Hirschmüller S, Marte R, Pravida J, Flach M. Inhibited wood degradation of cement-coated beech laminated veneer lumber (LVL) for temporary in-ground applications. Eur J Wood Wood Prod. 2018;76:1483–94.

    Article  CAS  Google Scholar 

  122. Eaton RA. Preservation of marine timbers. In: Findlay WPK, editor. Preservation of timber in the tropics. Forestry Sciences, vol. 17. Springer: Dordrecht; 1985. p. 157–91.

    Chapter  Google Scholar 

  123. Nicholas D, Rowlen A, Milsted D. Effect of concrete on the pH and susceptibility of treated pine to decay by brown-rot fungi. Forests. 2020;11:41.

    Article  Google Scholar 

  124. Baecker AA. Historical review of development of barrier protection systems for preserved wooden poles. Int Wood Prod J. 2010;1:6–14.

    Article  Google Scholar 

  125. Acda MN. Sustainable termite management using physical barriers. In: Khan M, Ahmad W, editors. Termites and sustainable management. Springer: Cham; 2018. p. 219–32.

    Chapter  Google Scholar 

  126. Mahapatro GK, Chatterjee D. Integrated termite management in the context of indoor and outdoor pest situation. In: Khan M, Ahmad W, editors. Termites and sustainable management. Springer: Cham; 2018. p. 119–35.

    Chapter  Google Scholar 

  127. Verma M, Verma S, Sharma S. Eco-friendly termite management in tropical conditions. In: Khan M, Ahmad W, editors. Termites and sustainable management. Springer: Cham; 2018. p. 137–64.

    Chapter  Google Scholar 

  128. Takikawa Y, Kakutani K, Matsuda Y, Nonomura T, Kusakari SI, Toyoda H. A promising physical pest-control system demonstrated in a greenhouse equipped with simple electrostatic devices that excluded all insect pests. Preprints. 2019;1–19. https://doi.org/10.20944/preprints201905.0256.v1.

  129. Nunes L, Cruz H, Fragoso M, Nobre T, Machado JS, Soares A. Impact of drywood termites in the Islands of Azores. IABSE Symp Rep. 2005;90:114–20.

    Google Scholar 

  130. Bevanger K. Woodpeckers, a nuisance to energy companies. Fauna Nor C. 1997;20:81–92.

    Google Scholar 

  131. Lokuge W, Otoom O, Borzou R, Navaratnam S, Herath N, Thambiratnam D. Experimental and numerical analysis on the effectiveness of GFRP wrapping system on timber pile rehabilitation. Case Stud Constr Mater. 2021;15:e00552.

    Google Scholar 

  132. Pournou A. Assessing the long-term efficacy of geotextiles in preserving archaeological wooden shipwrecks in the marine environment. J Marit Archaeol. 2018;13(1):1–4.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ajay Limaye, Roger Heady (dec.), Tim Senden and Kiyotaka Uchikura for providing photographs used in composite figures. Figure 4 displays unpublished research that was carried out at the XFM beamline at the Australian Synchrotron, part of ANSTO. PDE thanks The Australian National University (ANU) for access to advanced microscopy and X-ray CT facilities, part of an honourary professorship at the ANU, and UBC for granting him study leave in 2021–2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip D. Evans.

Ethics declarations

Conflict of Interest

The authors state that there are no conflicts of interests to declare.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Wood Structure and Function

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evans, P.D., Matsunaga, H., Preston, A.F. et al. Wood Protection for Carbon Sequestration — a Review of Existing Approaches and Future Directions. Curr Forestry Rep 8, 181–198 (2022). https://doi.org/10.1007/s40725-022-00166-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40725-022-00166-x

Keywords

Navigation