1932

Abstract

Antibodies have been used to prevent or treat viral infections since the nineteenth century, but the full potential to use passive immunization for infectious diseases has yet to be realized. The advent of efficient methods for isolating broad and potently neutralizing human monoclonal antibodies is enabling us to develop antibodies with unprecedented activities. The discovery of IgG Fc region modifications that extend antibody half-life in humans to three months or more suggests that antibodies could become the principal tool with which we manage future viral epidemics. Antibodies for members of most virus families that cause severe disease in humans have been isolated, and many of them are in clinical development, an area that has accelerated during the effort to prevent or treat COVID-19 (coronavirus disease 2019). Broad and potently neutralizing antibodies are also important research reagents for identification of protective epitopes that can be engineered into active vaccines through structure-based reverse vaccinology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-042718-041309
2022-04-26
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/immunol/40/1/annurev-immunol-042718-041309.html?itemId=/content/journals/10.1146/annurev-immunol-042718-041309&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Desselberger U. 2000. Emerging and re-emerging infectious diseases. J. Infect. 40:3–15
    [Google Scholar]
  2. 2. 
    Chappel MS, Isenman DE, Everett M, Xu YY, Dorrington KJ, Klein MH. 1991. Identification of the Fc gamma receptor class I binding site in human IgG through the use of recombinant IgG1/IgG2 hybrid and point-mutated antibodies. PNAS 88:9036–40
    [Google Scholar]
  3. 3. 
    Taylor LH, Latham SM, Woolhouse ME. 2001. Risk factors for human disease emergence. Philos. Trans. R. Soc. Lond. B 356:983–89
    [Google Scholar]
  4. 4. 
    Riley JC. 2005. Estimates of regional and global life expectancy, 1800–2001. Popul. Dev. Rev. 31:537–43
    [Google Scholar]
  5. 5. 
    Zijdeman R, Silva FR. 2015. Life expectancy at birth (total) IISH Data Collect. V1: https://hdl.handle.net/10622/LKYT53
  6. 6. 
    Gilchuk P, Bombardi RG, Erasmus JH, Tan Q, Nargi R et al. 2020. Integrated pipeline for the accelerated discovery of antiviral antibody therapeutics. Nat. Biomed. Eng. 4:1030–43
    [Google Scholar]
  7. 7. 
    Zost SJ, Gilchuk P, Chen RE, Case JB, Reidy JX et al. 2020. Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nat. Med. 26:1422–27
    [Google Scholar]
  8. 8. 
    Kim AS, Kafai NM, Winkler ES, Gilliland TC Jr., Cottle EL et al. 2021. Pan-protective anti-alphavirus human antibodies target a conserved E1 protein epitope. Cell 184:4414–29
    [Google Scholar]
  9. 9. 
    Tortorici MA, Czudnochowski N, Starr TN, Marzi M, Walls AC et al. 2021. Broad sarbecovirus neutralization by a human monoclonal antibody. Nature 597:103–8
    [Google Scholar]
  10. 10. 
    Corti D, Bianchi S, Vanzetta F, Minola A, Perez L et al. 2013. Cross-neutralization of four paramyxoviruses by a human monoclonal antibody. Nature 501:439–43
    [Google Scholar]
  11. 11. 
    Dong J, Cross RW, Doyle MP, Kose N, Mousa JJ et al. 2020. Potent henipavirus neutralization by antibodies recognizing diverse sites on Hendra and Nipah virus receptor binding protein. Cell 183:1536–50.e17
    [Google Scholar]
  12. 12. 
    Madsen A, Dai YN, McMahon M, Schmitz AJ, Turner JS et al. 2020. Human antibodies targeting influenza B virus neuraminidase active site are broadly protective. Immunity 53:852–63
    [Google Scholar]
  13. 13. 
    Ekiert DC, Bhabha G, Elsliger MA, Friesen RH, Jongeneelen M et al. 2009. Antibody recognition of a highly conserved influenza virus epitope. Science 324:246–51
    [Google Scholar]
  14. 14. 
    Sui J, Hwang WC, Perez S, Wei G, Aird D et al. 2009. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat. Struct. Mol. Biol. 16:265–73
    [Google Scholar]
  15. 15. 
    Bangaru S, Lang S, Schotsaer M, Vanderven HA, Zhu X et al. 2019. A site of vulnerability on the influenza virus hemagglutinin head domain trimer interface. Cell 177:1136–52
    [Google Scholar]
  16. 16. 
    Griffin MP, Yuan Y, Takas T, Domachowske JB, Madhi SA et al. 2020. Single-dose nirsevimab for prevention of RSV in preterm infants. N. Engl. J. Med. 383:415–425
    [Google Scholar]
  17. 17. 
    Shah DK, Betts AM. 2013. Antibody biodistribution coefficients: inferring tissue concentrations of monoclonal antibodies based on the plasma concentrations in several preclinical species and human. mAbs 5:297–305
    [Google Scholar]
  18. 18. 
    Cavazzoni CB, Bozza VBT, Lucas TCV, Conde L, Maia B et al. 2021. The immunodominant antibody response to Zika virus NS1 protein is characterized by cross-reactivity to self. J. Exp. Med. 218:e20210580
    [Google Scholar]
  19. 19. 
    Lee TH, Song BH, Yun SI, Woo HR, Lee YM et al. 2012. A cross-protective mAb recognizes a novel epitope within the flavivirus NS1 protein. J. Gen. Virol. 93:20–26
    [Google Scholar]
  20. 20. 
    Modhiran N, Song H, Liu L, Bletchly C, Brillault L et al. 2021. A broadly protective antibody that targets the flavivirus NS1 protein. Science 371:190–94
    [Google Scholar]
  21. 21. 
    Wessel AW, Kose N, Bombardi RG, Roy V, Chantima W et al. 2020. Antibodies targeting epitopes on the cell-surface form of NS1 protect against Zika virus infection during pregnancy. Nat. Commun. 11:5278
    [Google Scholar]
  22. 22. 
    Yu L, Liu X, Ye X, Su W, Zhang X et al. 2021. Monoclonal antibodies against Zika virus NS1 protein confer protection via Fcγ receptor-dependent and -independent pathways. mBio 12:e03179–20
    [Google Scholar]
  23. 23. 
    Webb NE, Montefiori DC, Lee B. 2015. Dose-response curve slope helps predict therapeutic potency and breadth of HIV broadly neutralizing antibodies. Nat. Commun. 6:8443
    [Google Scholar]
  24. 24. 
    Ketas TJ, Holuigue S, Matthews K, Moore JP, Klasse PJ 2012. Env-glycoprotein heterogeneity as a source of apparent synergy and enhanced cooperativity in inhibition of HIV-1 infection by neutralizing antibodies and entry inhibitors. Virology 422:22–36
    [Google Scholar]
  25. 25. 
    Ekiert DC, Kashyap AK, Steel J, Rubrum A, Bhabha G et al. 2012. Cross-neutralization of influenza A viruses mediated by a single antibody loop. Nature 489:526–32
    [Google Scholar]
  26. 26. 
    Hashiguchi T, Fusco ML, Bornholdt ZA, Lee JE, Flyak AI et al. 2015. Structural basis for Marburg virus neutralization by a cross-reactive human antibody. Cell 160:904–12
    [Google Scholar]
  27. 27. 
    Negrete OA, Levroney EL, Aguilar HC, Bertolotti-Ciarlet A, Nazarian R et al. 2005. EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature 436:401–5
    [Google Scholar]
  28. 28. 
    Rey FA, Lok S-M. 2018. Common features of enveloped viruses and implications for immunogen design for next-generation vaccines. Cell 172:1319–34
    [Google Scholar]
  29. 29. 
    Ciechonska M, Duncan R. 2014. Reovirus FAST proteins: virus-encoded cellular fusogens. Trends Microbiol 22:715–24
    [Google Scholar]
  30. 30. 
    Lozada C, Barlow TMA, Gonzalez S, Lubin-Germain N, Ballet S. 2021. Identification and characteristics of fusion peptides derived from enveloped viruses. Front. Chem. 9:689006
    [Google Scholar]
  31. 31. 
    White JM, Whittaker GR. 2016. Fusion of enveloped viruses in endosomes. Traffic 17:593–614
    [Google Scholar]
  32. 32. 
    Ahn A, Klimjack MR, Chatterjee PK, Kielian M. 1999. J. Virol. 73:10029–39
  33. 33. 
    Kong R, Xu K, Zhou T, Acharya P, Lemmin T et al. 2016. Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science 352:828–33
    [Google Scholar]
  34. 34. 
    Barbas CF3rd, Crowe JE Jr., Cababa D, Jones TM, Zebedee SL et al. 1992. Human monoclonal Fab fragments derived from a combinatorial library bind to respiratory syncytial virus F glycoprotein and neutralize infectivity. PNAS 89:10164–68
    [Google Scholar]
  35. 35. 
    Crowe JE Jr., Murphy BR, Chanock RM, Williamson RA, Barbas CF3rd, Burton DR. 1994. Recombinant human respiratory syncytial virus (RSV) monoclonal antibody Fab is effective therapeutically when introduced directly into the lungs of RSV-infected mice. PNAS 91:1386–90
    [Google Scholar]
  36. 36. 
    Sevy AM, Gilchuk IM, Brown BP, Bozhanova NG, Nargi R et al. 2020. Computationally designed cyclic peptides derived from an antibody loop increase breadth of binding for influenza variants. Structure 28:1114–23.e4
    [Google Scholar]
  37. 37. 
    Pancera M, Zhou T, Druz A, Georgiev IS, Soto C et al. 2014. Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature 514:455–61
    [Google Scholar]
  38. 38. 
    Julien JP, Cupo A, Sok D, Stanfield RL, Lyumkis D et al. 2013. Crystal structure of a soluble cleaved HIV-1 envelope trimer. Science 342:1477–83
    [Google Scholar]
  39. 39. 
    McLellan JS, Chen M, Leung S, Graepel KW, Du X et al. 2013. Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science 340:1113–17
    [Google Scholar]
  40. 40. 
    McLellan JS, Chen M, Joyce MG, Sastry M, Stewart-Jones GB et al. 2013. Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science 342:592–98
    [Google Scholar]
  41. 41. 
    Mukhamedova M, Wrapp D, Shen CH, Gilman MSA, Ruckwardt TJ et al. 2021. Vaccination with prefusion-stabilized respiratory syncytial virus fusion protein induces genetically and antigenically diverse antibody responses. Immunity 54:769–80.e6
    [Google Scholar]
  42. 42. 
    McAuley JL, Gilbertson BP, Trifkovic S, Brown LE, McKimm-Breschkin JL. 2019. Influenza virus neuraminidase structure and functions. Front. Microbiol. 10:39
    [Google Scholar]
  43. 43. 
    Bangaru S, Zhang H, Gilchuk IM, Voss TG, Irving RP et al. 2018. A multifunctional human monoclonal neutralizing antibody that targets a unique conserved epitope on influenza HA. Nat. Commun. 9:2669
    [Google Scholar]
  44. 44. 
    Turner HL, Andrabi R, Cottrell CA, Richey ST, Song G et al. 2021. Disassembly of HIV envelope glycoprotein trimer immunogens is driven by antibodies elicited via immunization. Sci. Adv. 7:eabh2791
    [Google Scholar]
  45. 45. 
    Huang J, Diaz D, Mousa JJ. 2020. Antibody recognition of the Pneumovirus fusion protein trimer interface. PLOS Pathog 16:e1008942
    [Google Scholar]
  46. 46. 
    Gilman MSA, Furmanova-Hollenstein P, Pascual G, van ’t Wout AB, Langedijk JPM, McLellan JS. 2019. Transient opening of trimeric prefusion RSV F proteins. Nat. Commun. 10:2105
    [Google Scholar]
  47. 47. 
    Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P et al. 2009. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326:285–89
    [Google Scholar]
  48. 48. 
    Doria-Rose NA, Altae-Tran HR, Roark RS, Schmidt SD, Sutton MS et al. 2017. Mapping polyclonal HIV-1 antibody responses via next-generation neutralization fingerprinting. PLOS Pathog 13:e1006148
    [Google Scholar]
  49. 49. 
    Creanga A, Gillespie RA, Fisher BE, Andrews SF, Lederhofer J et al. 2021. A comprehensive influenza reporter virus panel for high-throughput deep profiling of neutralizing antibodies. Nat. Commun. 12:1722
    [Google Scholar]
  50. 50. 
    Kinchen VJ, Massaccesi G, Flyak AI, Mankowski MC, Colbert MD et al. 2019. Plasma deconvolution identifies broadly neutralizing antibodies associated with hepatitis C virus clearance. J. Clin. Investig. 129:4786–96
    [Google Scholar]
  51. 51. 
    Chapman NS, Zhao H, Kose N, Westover JB, Kalveram B et al. 2021. Potent neutralization of Rift Valley fever virus by human monoclonal antibodies through fusion inhibition. PNAS 118:e2025642118
    [Google Scholar]
  52. 52. 
    Flyak AI, Ilinykh PA, Murin CD, Garron T, Shen X et al. 2015. Mechanism of human antibody-mediated neutralization of Marburg virus. Cell 160:893–903
    [Google Scholar]
  53. 53. 
    Aiyegbo MS, Eli IM, Spiller BW, Williams DR, Kim R et al. 2014. Differential accessibility of a rotavirus VP6 epitope in trimers comprising type I, II, or III channels as revealed by binding of a human rotavirus VP6-specific antibody. J. Virol. 88:469–76
    [Google Scholar]
  54. 54. 
    Poor TA, Jones LM, Sood A, Leser GP, Plasencia MD et al. 2014. Probing the paramyxovirus fusion (F) protein-refolding event from pre- to postfusion by oxidative footprinting. PNAS 111:E2596–605
    [Google Scholar]
  55. 55. 
    Davidson E, Doranz BJ 2014. A high-throughput shotgun mutagenesis approach to mapping B-cell antibody epitopes. Immunology 143:13–20
    [Google Scholar]
  56. 56. 
    Thyagarajan B, Bloom JD. 2014. The inherent mutational tolerance and antigenic evolvability of influenza hemagglutinin. eLife 3:e03300
    [Google Scholar]
  57. 57. 
    Starr TN, Greaney AJ, Addetia A, Hannon WW, Choudhary MC et al. 2021. Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science 371:850–54
    [Google Scholar]
  58. 58. 
    Dong J, Zost SJ, Greaney AJ, Starr TN, Dingens AS et al. 2021. Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nat. Microbiol. 6:101233–44
    [Google Scholar]
  59. 59. 
    Doud MB, Hensley SE, Bloom JD. 2017. Complete mapping of viral escape from neutralizing antibodies. PLoS Pathog 13:e1006271
    [Google Scholar]
  60. 60. 
    Pascal KE, Dudgeon D, Trefry JC, Anantpadma M, Sakurai Y et al. 2018. Development of clinical-stage human monoclonal antibodies that treat advanced Ebola virus disease in nonhuman primates. J. Infect. Dis. 218:S612–26
    [Google Scholar]
  61. 61. 
    Mulangu S, Dodd LE, Davey RT Jr., Tshiani Mbaya O, Proschan M et al. 2019. A randomized, controlled trial of Ebola virus disease therapeutics. N. Engl. J. Med. 381:2293–303
    [Google Scholar]
  62. 62. 
    Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H et al. 2021. REGN-COV2, a neutralizing antibody cocktail, in outpatients with Covid-19. N. Engl. J. Med. 384:238–51
    [Google Scholar]
  63. 63. 
    US Food Drug Admin 2021. Summary of process for EUA issuance. U.S. Food & Drug Administration. https://www.fda.gov/emergency-preparedness-and-response/mcm-legal-regulatory-and-policy-framework/summary-process-eua-issuance
  64. 64. 
    Ianevski A, Giri AK, Aittokallio T. 2020. SynergyFinder 2.0: visual analytics of multi-drug combination synergies. Nucleic Acids Res 48:W488–93
    [Google Scholar]
  65. 65. 
    Gilchuk P, Murin CD, Milligan JC, Cross RW, Mire CE et al. 2020. Analysis of a therapeutic antibody cocktail reveals determinants for cooperative and broad ebolavirus neutralization. Immunity 52:388–403.e12
    [Google Scholar]
  66. 66. 
    Doyle MP, Kose N, Borisevich V, Binshtein E, Amaya M et al. 2021. Cooperativity mediated by rationally selected combinations of human monoclonal antibodies targeting the henipavirus receptor binding protein. Cell Rep 36:9109628
    [Google Scholar]
  67. 67. 
    Zost SJ, Gilchuk P, Case JB, Binshtein E, Chen RE et al. 2020. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 584:443–49
    [Google Scholar]
  68. 68. 
    Xu L, Pegu A, Rao E, Doria-Rose N, Beninga J et al. 2017. Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques. Science 358:85–90
    [Google Scholar]
  69. 69. 
    Baker MP, Reynolds HM, Lumicisi B, Bryson CJ 2010. Immunogenicity of protein therapeutics: the key causes, consequences and challenges. Self Nonself 1:314–22
    [Google Scholar]
  70. 70. 
    Arvin AM, Fink K, Schmid MA, Cathcart A, Spreafico R et al. 2020. A perspective on potential antibody-dependent enhancement of SARS-CoV-2. Nature 584:353–63
    [Google Scholar]
  71. 71. 
    Li D, Edwards RJ, Manne K, Martinez DR, Schäfer A et al. 2021. In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. 2021. Cell 184:4203–19
    [Google Scholar]
  72. 72. 
    Kuzmina NA, Younan P, Gilchuk P, Santos RI, Flyak AI et al. 2018. Antibody-dependent enhancement of Ebola virus infection by human antibodies isolated from survivors. Cell Rep 24:1802–15.e5
    [Google Scholar]
  73. 73. 
    Halstead SB. 2021. Vaccine-associated enhanced viral disease: Implications for viral vaccine development. BioDrugs 35:505–15
    [Google Scholar]
  74. 74. 
    Khurana S, Loving CL, Manischewitz J, King LR, Gauger PC et al. 2013. Vaccine-induced anti-HA2 antibodies promote virus fusion and enhance influenza virus respiratory disease. Sci. Transl. Med. 5:200ra114
    [Google Scholar]
  75. 75. 
    Winarski KL, Tang J, Klenow L, Lee J, Coyle EM et al. 2019. Antibody-dependent enhancement of influenza disease promoted by increase in hemagglutinin stem flexibility and virus fusion kinetics. PNAS 116:15194–99
    [Google Scholar]
  76. 76. 
    Tsuchihashi Y, Sunagawa T, Yahata Y, Takahashi H, Toyokawa T et al. 2012. Association between seasonal influenza vaccination in 2008–2009 and pandemic influenza A (H1N1) 2009 infection among school students from Kobe, Japan, April-June 2009. Clin. Infect. Dis. 54:381–83
    [Google Scholar]
  77. 77. 
    Co MD, Terajima M, Thomas SJ, Jarman RG, Rungrojcharoenkit K et al. 2014. Relationship of preexisting influenza hemagglutination inhibition, complement-dependent lytic, and antibody-dependent cellular cytotoxicity antibodies to the development of clinical illness in a prospective study of A(H1N1)pdm09 Influenza in children. Viral Immunol 27:375–82
    [Google Scholar]
  78. 78. 
    Monsalvo AC, Batalle JP, Lopez MF, Krause JC, Klemenc J et al. 2011. Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes. Nat. Med. 17:195–99
    [Google Scholar]
  79. 79. 
    Bournazos S, Gupta A, Ravetch JV. 2020. The role of IgG Fc receptors in antibody-dependent enhancement. Nat. Rev. Immunol. 20:633–43
    [Google Scholar]
  80. 80. 
    Berndsen ZT, Chakraborty S, Wang X, Cottrell CA, Torres JL et al. 2020. Visualization of the HIV-1 Env glycan shield across scales. PNAS 117:28014–25
    [Google Scholar]
  81. 81. 
    Fairman CW, Lever AML, Kenyon JC. 2021. Evaluating RNA structural flexibility: Viruses lead the way. Viruses 13:2130
    [Google Scholar]
  82. 82. 
    Schoeder CT, Schmitz S, Adolf-Bryfogle J, Sevy AM, Finn JA et al. 2021. Modeling immunity with Rosetta: methods for antibody and antigen design. Biochemistry 60:825–46
    [Google Scholar]
  83. 83. 
    Willis JR, Sapparapu G, Murrell S, Julien JP, Singh V et al. 2015. Redesigned HIV antibodies exhibit enhanced neutralizing potency and breadth. J. Clin. Investig. 125:2523–31
    [Google Scholar]
  84. 84. 
    Sevy AM, Wu NC, Gilchuk IM, Parrish EH, Burger S et al. 2019. Multistate design of influenza antibodies improves affinity and breadth against seasonal viruses. PNAS 116:1597–602
    [Google Scholar]
  85. 85. 
    Finn JA, Dong J, Sevy AM, Parrish E, Gilchuk I et al. 2020. Identification of structurally related antibodies in antibody sequence databases using Rosetta-derived position-specific scoring. Structure 28:1124–30.e5
    [Google Scholar]
  86. 86. 
    Bozhanova NG, Sangha AK, Sevy AM, Gilchuk P, Huang K et al. 2020. Discovery of Marburg virus neutralizing antibodies from virus-naive human antibody repertoires using large-scale structural predictions. PNAS 117:31142–48
    [Google Scholar]
  87. 87. 
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:7873583–89
    [Google Scholar]
  88. 88. 
    Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S et al. 2021. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373:871–76
    [Google Scholar]
  89. 89. 
    Vju TH, Patz FP Jr., Ackerman ME. 2021. Coming together at the hinges: therapeutic prospects of IgG3. mAbs 13:1882028
    [Google Scholar]
  90. 90. 
    Richards JO, Karki S, Lazar GA, Chen H, Dang W et al. 2008. Optimization of antibody binding to FcγRIIa enhances macrophage phagocytosis of tumor cells. Mol. Cancer Ther. 7:2517–27
    [Google Scholar]
  91. 91. 
    DiLillo DJ, Ravetch JV. 2015. Differential Fc-receptor engagement drives an anti-tumor vaccinal effect. Cell 161:1035–45
    [Google Scholar]
  92. 92. 
    Weitzenfeld P, Bournazos S, Ravetch JV. 2019. Antibodies targeting sialyl Lewis A mediate tumor clearance through distinct effector pathways. J. Clin. Investig. 129:3952–62
    [Google Scholar]
  93. 93. 
    Lazar GA, Dang W, Karki S, Vafa O, Pemg JS et al. 2006. Engineered antibody Fc variants with enhanced effector function. PNAS 103:4005–10
    [Google Scholar]
  94. 94. 
    Ferrara C, Grau S, Jäger C, Sondermann P, Brünker P et al. 2011. Unique carbohydrate-carbohydrate interactions are required for high affinity binding between FcγRIII and antibodies lacking core fucose. PNAS 108:12669–74
    [Google Scholar]
  95. 95. 
    Bournazos S. 2019. IgG Fc receptors: evolutionary considerations. Curr. Top. Microbiol. Immunol. 423:1–11
    [Google Scholar]
  96. 96. 
    Foss S, Bottermann M, Jonsson A, Sandlie I, James LC, Andersen JT 2019. TRIM21—from intracellular immunity to therapy. Front. Immunol. 10:2049
    [Google Scholar]
  97. 97. 
    de Sousa-Pereira P, Woof JM. 2019. IgA: structure, function, and developability. Antibodies 8::57
    [Google Scholar]
  98. 98. 
    Garcia-Castillo MD, Chinnapen DJ-F, Lencer WI. 2017. Membrane transport across polarized epithelia. Cold Spring Harb. Perspect. Biol. 9:a027912
    [Google Scholar]
  99. 99. 
    Michaelsen TE, Emilsen S, Sandin RH, Granerud BK, Bratlie D et al. 2017. Human secretory IgM antibodies activate human complement and offer protection at mucosal surface. Scand. J. Immunol. 85:43–50
    [Google Scholar]
  100. 100. 
    Ku Z, Xie X, Hinton PR, Liu X, Ye X et al. 2021. Nasal delivery of an IgM offers broad protection from SARS-CoV-2 variants. Nature 595:718–23
    [Google Scholar]
  101. 101. 
    Fouda GG, Eudailey J, Kunz EL, Amos JD, Liebl BE et al. 2017. Systemic administration of an HIV-1 broadly neutralizing dimeric IgA yields mucosal secretory IgA and virus neutralization. Mucosal Immunol 10:228–37
    [Google Scholar]
  102. 102. 
    Zalevsky J, Chamberlain AK, Horton HM, Karki S, Leung IW et al. 2010. Enhanced antibody half-life improves in vivo activity. Nat. Biotechnol. 28:157–59
    [Google Scholar]
  103. 103. 
    Dall'Acqua WF, Kiener PA, Wu H 2006. Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J. Biol. Chem. 281:23514–24
    [Google Scholar]
  104. 104. 
    Lee CH, Kang TH, Godon O, Watanabe M, Delidakis G et al. 2019. An engineered human Fc domain that behaves like a pH-toggle switch for ultra-long circulation persistence. Nat. Commun. 10:5461
    [Google Scholar]
  105. 105. 
    Yu XQ, Robbie GJ, Wu Y, Esser MT, Jensen K et al. 2017. Safety, tolerability, and pharmacokinetics of MEDI4893, an investigational, extended-half-life, anti-Staphylococcus aureus alpha-toxin human monoclonal antibody, in healthy adults. Antimicrob. Agents Chemother. 61:e01020–16
    [Google Scholar]
  106. 106. 
    Griffin MP, Khan AA, Esser MT, Jensen K, Takas T et al. 2017. Safety, tolerability, and pharmacokinetics of MEDI8897, the respiratory syncytial virus prefusion F-targeting monoclonal antibody with an extended half-life, in healthy adults. Antimicrob. Agents Chemother. 61:e01714–16
    [Google Scholar]
  107. 107. 
    Oganesyan V, Damschroder MM, Woods RM, Cook KE, Wu H, Dall'Acqua WF. 2009. Structural characterization of a human Fc fragment engineered for extended serum half-life. Mol. Immunol. 46:1750–55
    [Google Scholar]
  108. 108. 
    Domachowske JB, Khan AA, Esser MT, Jensen K, Takas T et al. 2018. Safety, tolerability and pharmacokinetics of MEDI8897, an extended half-life single-dose respiratory syncytial virus prefusion F-targeting monoclonal antibody administered as a single dose to healthy preterm infants. Pediatr. Infect. Dis. J. 37:886–92
    [Google Scholar]
  109. 109. 
    Loo YM, McTamney PM, Arends RH, Abram ME, Aksyuk AA et al. 2022. The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective in non-human primates and has an extended half-life in humans. Sci. Transl. Med. In press. https://doi.org/10.1126/scitranslmed.abl8124
    [Crossref] [Google Scholar]
  110. 110. 
    Nnane IP, Han C, Jiao Q, Tam SH, Davis HM, Xu Z 2017. Modification of the Fc region of a human anti-oncostatin M monoclonal antibody for higher affinity to FcRn receptor and extension of half-life in cynomolgus monkeys. Basic Clin. Pharmacol. Toxicol. 121:13–21
    [Google Scholar]
  111. 111. 
    Gautam R, Nishimura Y, Pegu A, Nason MC, Klein F et al. 2016. A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges. Nature 533:105–9
    [Google Scholar]
  112. 112. 
    Chao DT, Ma X, Li O, Park H, Law D 2009. Functional characterization of N297A, a murine surrogate for low-Fc binding anti-human CD3 antibodies. Immunol. Investig. 38:76–92
    [Google Scholar]
  113. 113. 
    Lo M, Kim HS, Tong RK, Bainbridge TW, Vernes JM et al. 2017. Effector-attenuating substitutions that maintain antibody stability and reduce toxicity in mice. J. Biol. Chem. 292:3900–8
    [Google Scholar]
  114. 114. 
    Hezareh M, Hessell AJ, Jensen RC, van de Winkel JG, Parren PW. 2001. Effector function activities of a panel of mutants of a broadly neutralizing antibody against human immunodeficiency virus type 1. J. Virol. 75:12161–68
    [Google Scholar]
  115. 115. 
    Shields RL, Lai J, Keck R, O'Connell LY, Hong K et al. 2002. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcγ RIII and antibody-dependent cellular toxicity. J. Biol. Chem. 277:26733–40
    [Google Scholar]
  116. 116. 
    Dekkers G, Bentlage AEH, Stegmann TC, Howie HL, Lissenberg-Thunnissen S et al. 2017. Affinity of human IgG subclasses to mouse Fc gamma receptors. mAbs 9:767–73
    [Google Scholar]
  117. 117. 
    Derebe MG, Nanjunda RK, Gilliland GL, Lacy ER, Chiu ML 2018. Human IgG subclass cross-species reactivity to mouse and cynomolgus monkey Fcγ receptors. Immunol. Lett. 197:1–8
    [Google Scholar]
  118. 118. 
    Casey E, Bournazos S, Mo G, Mondello P, Tan KS et al. 2018. A new mouse expressing human Fcγ receptors to better predict therapeutic efficacy of human anti-cancer antibodies. Leukemia 32:547–49
    [Google Scholar]
  119. 119. 
    Beutier H, Hechler B, Godon O, Wang Y, Gillis CM et al. 2018. Platelets expressing IgG receptor FcγRIIA/CD32A determine the severity of experimental anaphylaxis. Sci. Immunol. 3:eaan599
    [Google Scholar]
  120. 120. 
    Amiah MA, Ouattara A, Okou DT, N'Guetta SA, Yavo W. 2020. Polymorphisms in Fc gamma receptors and susceptibility to malaria in an endemic population. Front. Immunol. 11:561142
    [Google Scholar]
  121. 121. 
    Parren PW, Burton DR. 2001. The antiviral activity of antibodies in vitro and in vivo. Adv. Immunol. 77:195–262
    [Google Scholar]
  122. 122. 
    Barbas CF3rd, Hu D, Dunlop N, Sawyer L, Cababa D et al. 1994. In vitro evolution of a neutralizing human antibody to human immunodeficiency virus type 1 to enhance affinity and broaden strain cross-reactivity. PNAS 91:3809–13
    [Google Scholar]
  123. 123. 
    Yang WP, Green K, Pinz-Sweeney S, Briones AT, Burton DR, Barbas CF3rd. 1995. CDR walking mutagenesis for the affinity maturation of a potent human anti-HIV-1 antibody into the picomolar range. J. Mol. Biol. 254:392–403
    [Google Scholar]
  124. 124. 
    Hamers-Casterman C, Atarhouch T, Muyldermans S, Robinson G, Hamers C et al. 1993. Naturally occurring antibodies devoid of light chains. Nature 363:446–48
    [Google Scholar]
  125. 125. 
    Collet TA, Roben P, O'Kennedy R, Barbas CF3rd, Burton DR, Lerner RA. 1992. A binary plasmid system for shuffling combinatorial antibody libraries. PNAS 89:10026–30
    [Google Scholar]
  126. 126. 
    Boder ET, Midelfort KS, Wittrup KD. 2000. Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. PNAS 97:10701–5
    [Google Scholar]
  127. 127. 
    Wec AZ, Wrapp D, Herbert AS, Maurer DP, Haslwanter D et al. 2020. Broad neutralization of SARS-related viruses by human monoclonal antibodies. Science 369:731–36
    [Google Scholar]
  128. 128. 
    Rappazzo CG, Tse LV, Kaku CI, Wrapp D, Sakharkar M et al. 2021. Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody. Science 371:823–29
    [Google Scholar]
  129. 129. 
    Muramatsu M, Sankaranand VS, Anant S, Sugai M, Kinoshita K et al. 1999. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274:18470–76
    [Google Scholar]
  130. 130. 
    Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T. 2000. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553–63
    [Google Scholar]
  131. 131. 
    Cumbers SJ, Williams GT, Davies SL, Grenfell RL, Takeda S et al. 2002. Generation and iterative affinity maturation of antibodies in vitro using hypermutating B-cell lines. Nat. Biotechnol. 20:1129–34
    [Google Scholar]
  132. 132. 
    Sanjuan Nandin I, Fong C, Deantonio C, Torreno-Pina JA, Pecetta S et al. 2017. Novel in vitro booster vaccination to rapidly generate antigen-specific human monoclonal antibodies. J. Exp. Med. 214:2471–90
    [Google Scholar]
  133. 133. 
    Okazaki IM, Kinoshita K, Muramatsu M, Yoshikawa K, Honjo T. 2002. The AID enzyme induces class switch recombination in fibroblasts. Nature 416:340–45
    [Google Scholar]
  134. 134. 
    Wu H, Pfarr DS, Tang Y, An LL, Patel NK et al. 2005. Ultra-potent antibodies against respiratory syncytial virus: effects of binding kinetics and binding valence on viral neutralization. J. Mol. Biol. 350:126–44
    [Google Scholar]
  135. 135. 
    Wu H, Pfarr DS, Johnson S, Brewah YA, Woods RM et al. 2007. Development of motavizumab, an ultra-potent antibody for the prevention of respiratory syncytial virus infection in the upper and lower respiratory tract. J. Mol. Biol. 368:652–65
    [Google Scholar]
  136. 136. 
    Carbonell-Estrany X, Simoes EA, Dagan R, Hall CB, Harris B et al. 2010. Motavizumab for prophylaxis of respiratory syncytial virus in high-risk children: a noninferiority trial. Pediatrics 125:e35–51
    [Google Scholar]
  137. 137. 
    Graham BS, Perkins MD, Wright PF. 1988. Primary respiratory syncytial virus infection in mice. Med. Virol. 26:153–62
    [Google Scholar]
  138. 138. 
    Dagotto G, Mercado NB, Martinez DR, Hou YJ, Nkolola JP et al. 2021. Comparison of subgenomic and total RNA in SARS-CoV-2 challenged rhesus macaques. J. Virol. 95:e02370–20
    [Google Scholar]
  139. 139. 
    Scanga CA, Lopresti BJ, Tomko J, Frye LJ, Coleman TM et al. 2014. In vivo imaging in an ABSL-3 regional biocontainment laboratory. Pathog. Dis. 71:207–12
    [Google Scholar]
  140. 140. 
    Safronetz D, Geisbert TW, Feldmann H. 2013. Animal models for highly pathogenic emerging viruses. Curr. Opin. Virol. 3:205–9
    [Google Scholar]
  141. 141. 
    Trefry JC, Wollen SE, Nasar F, Shamblin JD, Kern SJ et al. 2015. Ebola virus infections in nonhuman primates are temporally influenced by glycoprotein poly-U editing site populations in the exposure material. Viruses 7:6739–54
    [Google Scholar]
  142. 142. 
    Berger M, Cupps TR, Fauci AS. 1982. High-dose immunoglobulin replacement therapy by slow subcutaneous infusion during pregnancy. JAMA 247:2824–25
    [Google Scholar]
  143. 143. 
    Gardulf A, Hammarstrom L, Smith CI. 1991. Home treatment of hypogammaglobulinaemia with subcutaneous gammaglobulin by rapid infusion. Lancet 338:162–66
    [Google Scholar]
  144. 144. 
    Banavar JR, Moses ME, Brown JH, Damuth J, Rinaldo A et al. 2010. A general basis for quarter-power scaling in animals. PNAS 107:15816–20
    [Google Scholar]
  145. 145. 
    Lowe PJ, Tannenbaum S, Wu K, Lloyd P, Sims J 2010. On setting the first dose in man: quantitating biotherapeutic drug-target binding through pharmacokinetic and pharmacodynamic models. Basic Clin. Pharmacol. Toxicol. 106:195–209
    [Google Scholar]
  146. 146. 
    White CR, Kearney MR. 2014. Metabolic scaling in animals: methods, empirical results, and theoretical explanations. Compr. Physiol. 4:231–56
    [Google Scholar]
  147. 147. 
    Nair AB, Jacob S. 2016. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 7:27–31
    [Google Scholar]
  148. 148. 
    Kraft TE, Richter WF, Emrich T, Knaupp A, Schuster M et al. 2020. Heparin chromatography as an in vitro predictor for antibody clearance rate through pinocytosis. mAbs 12:1683432
    [Google Scholar]
  149. 149. 
    US Food Drug Admin 2005. Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers FDA Guid. Doc., Silver Spring, MD, FDA. https://www.fda.gov/media/72309/download
  150. 150. 
    Underwood PA. 1982. Mapping of antigenic changes in the haemagglutinin of Hong Kong influenza (H3N2) strains using a large panel of monoclonal antibodies. J. Gen. Virol. 62:153–69
    [Google Scholar]
  151. 151. 
    Wiley DC, Wilson IA, Skehel JJ 1981. Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289:373–78
    [Google Scholar]
  152. 152. 
    Caton AJ, Brownlee GG, Yewdell JW, Gerhard W. 1982. The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell 31:417–27
    [Google Scholar]
  153. 153. 
    Lee PS, Ohshima N, Stanfield RL, Yu W, Iba Y et al. 2014. Receptor mimicry by antibody F045–092 facilitates universal binding to the H3 subtype of influenza virus. Nat. Commun. 5:3614
    [Google Scholar]
  154. 154. 
    Ohshima N, Iba Y, Kubota-Koketsu R, Asano Y, Okuno Y, Kurosawa Y. 2011. Naturally occurring antibodies in humans can neutralize a variety of influenza virus strains, including H3, H1, H2, and H5. J. Virol. 85:11048–57
    [Google Scholar]
  155. 155. 
    Krause JC, Tsibane T, Tumpey TM, Huffman CJ, Albrecht R et al. 2012. Human monoclonal antibodies to pandemic 1957 H2N2 and pandemic 1968 H3N2 influenza viruses. J. Virol. 86:6334–40
    [Google Scholar]
  156. 156. 
    Xu R, Krause JC, McBride R, Paulson JC, Crowe JE Jr., Wilson IA. 2013. A recurring motif for antibody recognition of the receptor-binding site of influenza hemagglutinin. Nat. Struct. Mol. Biol. 20:363–70
    [Google Scholar]
  157. 157. 
    Dreyfus C, Laursen NS, Kwaks T, Zuijdgeest D, Khayat R et al. 2012. Highly conserved protective epitopes on influenza B viruses. Science 337:1343–48
    [Google Scholar]
  158. 158. 
    Brandenburg B, Koudstaal W, Goudsmit J, Klaren V, Tang C et al. 2013. Mechanisms of hemagglutinin targeted influenza virus neutralization. PLOS ONE 8:e80034
    [Google Scholar]
  159. 159. 
    Chen EC, Gilchuk P, Zost SJ, Suryadevara N, Winkler ES et al. 2021. Convergent antibody responses to the SARS-CoV-2 spike protein in convalescent and vaccinated individuals. Cell Rep 36:8109604
    [Google Scholar]
  160. 160. 
    Watanabe A, McCarthy KR, Kuraoka M, Schmidt AG, Adachi Y et al. 2019. Antibodies to a conserved influenza head interface epitope protect by an IgG subtype-dependent mechanism. Cell 177:1124–35.e16
    [Google Scholar]
  161. 161. 
    Lee J, Boutz DR, Chromikova V, Joyce MG, Vollmers C et al. 2016. Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination. Nat. Med. 22:121456–64
    [Google Scholar]
  162. 162. 
    Yu F, Song H, Wu Y, Chang SY, Wang L et al. 2017. A potent germline-like human monoclonal antibody targets a pH-sensitive epitope on H7N9 influenza hemagglutinin. Cell Host Microbe 22:471–83.e5
    [Google Scholar]
  163. 163. 
    Dong J, Gilchuk I, Li S, Irving R, Goff MT et al. 2020. Anti-influenza H7 human antibody targets antigenic site in hemagglutinin head domain interface. J. Clin. Investig. 130:4734–39
    [Google Scholar]
  164. 164. 
    Nachbagauer R, Feser J, Naficy A, Bernstein DI, Guptill J et al. 2021. A chimeric hemagglutinin-based universal influenza virus vaccine approach induces broad and long-lasting immunity in a randomized, placebo-controlled phase I trial. Nat. Med. 27:106–14
    [Google Scholar]
  165. 165. 
    Zost SJ, Dong J, Gilchuk IM, Gilchuk P, Thornburg NJ et al. 2021. Canonical features of human antibodies recognizing the influenza hemagglutinin trimer interface. J. Clin. Investig. 131:e146791
    [Google Scholar]
  166. 166. 
    Kallewaard NL, Corti D, Collins PJ, Neu U, McAuliffe JM et al. 2016. Structure and function analysis of an antibody recognizing all influenza A subtypes. Cell 166:596–608
    [Google Scholar]
  167. 167. 
    Throsby M, van den Brink E, Jongeneelen M, Poon LL, Alard P et al. 2008. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLOS ONE 3:e3942
    [Google Scholar]
  168. 168. 
    Ekiert DC, Friesen RHE, Bhabha G, Kwaks T, Jongeneelen M et al. 2011. A highly conserved neutralizing epitope on group 2 influenza A viruses. Science 333:843–50
    [Google Scholar]
  169. 169. 
    Han A, Czajkowski L, Rosas LA, Cervantes-Medina A, Xiao Y et al. 2021. Safety and efficacy of CR6261 in an influenza A H1N1 healthy human challenge model. Clin. Infect. Dis.73:e4260–68
    [Google Scholar]
  170. 170. 
    Memoli MJ, Shaw PA, Han A, Czajkowski L, Reed S et al. 2016. Evaluation of antihemagglutinin and antineuraminidase antibodies as correlates of protection in an influenza A/H1N1 virus healthy human challenge model. mBio 7:e00417–16
    [Google Scholar]
  171. 171. 
    Gilchuk IM, Bangaru S, Gilchuk P, Irving RP, Kose N et al. 2019. Influenza H7N9 virus neuraminidase-specific human monoclonal antibodies inhibit viral egress and protect from lethal influenza infection in mice. Cell Host Microbe 26:715–28.e8
    [Google Scholar]
  172. 172. 
    Zhu X, Turner HL, Lang S, McBride R, Bangaru S et al. 2019. Structural basis of protection against H7N9 influenza virus by human anti-N9 neuraminidase antibodies. Cell Host Microbe 26:729–38.e4
    [Google Scholar]
  173. 173. 
    Stadlbauer D, Zhu X, McMahon M, Turner JS, Wohlbold TJ et al. 2019. Broadly protective human antibodies that target the active site of influenza virus neuraminidase. Science 366:499–504
    [Google Scholar]
  174. 174. 
    Walsh EE, Hall CB 2015. Respiratory syncytial virus (RSV). Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases ed. JE Bennett, R Dolin, MJ Blaser , pp. 1948–60.e3 Philadelphia: WB Saunders
    [Google Scholar]
  175. 175. 
    Williams JV, Harris PA, Tollefson SJ, Halburnt-Rush LL, Pingsterhaus JM et al. 2004. Human metapneumovirus and lower respiratory tract disease in otherwise healthy infants and children. N. Engl. J. Med. 350:443–50
    [Google Scholar]
  176. 176. 
    McLellan JS, Yang Y, Graham BS, Kwong PD 2011. Structure of respiratory syncytial virus fusion glycoprotein in the postfusion conformation reveals preservation of neutralizing epitopes. J. Virol. 85:7788–96
    [Google Scholar]
  177. 177. 
    Simoes EAF, Forleo-Neto E, Geba GP, Kamal M, Yang F et al. 2021. Suptavumab for the prevention of medically attended respiratory syncytial virus infection in preterm infants. Clin. Infect. Dis.73:e4400–8
    [Google Scholar]
  178. 178. 
    Detalle L, Stohr T, Palomo C, Piedra PA, Gilbert BE et al. 2016. Generation and characterization of ALX-0171, a potent novel therapeutic nanobody for the treatment of respiratory syncytial virus infection. Antimicrob. Agents Chemother. 60:6–13
    [Google Scholar]
  179. 179. 
    Collarini EJ, Lee FE, Foord O, Park M, Sperinde G et al. 2009. Potent high-affinity antibodies for treatment and prophylaxis of respiratory syncytial virus derived from B cells of infected patients. J. Immunol. 183:6338–45
    [Google Scholar]
  180. 180. 
    Bar-Peled Y, Diaz D, Pena-Briseno A, Murray J, Huang J et al. 2019. A potent neutralizing site III-specific human antibody neutralizes human metapneumovirus in vivo. J. Virol. 93:e00342–19
    [Google Scholar]
  181. 181. 
    Williams JV, Chen Z, Cseke G, Wright DW, Keefer CJ et al. 2007. A recombinant human monoclonal antibody to human metapneumovirus fusion protein that neutralizes virus in vitro and is effective therapeutically in vivo. J. Virol. 81:8315–24
    [Google Scholar]
  182. 182. 
    Wen X, Mousa JJ, Bates JT, Lamb RA, Crowe JE Jr., Jardetzky TS. 2017. Structural basis for antibody cross-neutralization of respiratory syncytial virus and human metapneumovirus. Nat. Microbiol. 2:16272
    [Google Scholar]
  183. 183. 
    Amaya M, Broder CB. 2020. Vaccines to emerging viruses: Nipah and Hendra. . Annu. Rev. Virol. 7:447–73
    [Google Scholar]
  184. 184. 
    Arunkumar G, Chandni R, Mourya DT, Singh SK, Sadanandan R et al. 2019. Outbreak investigation of Nipah virus disease in Kerala, India. J. Infect. Dis. 219:1867–78
    [Google Scholar]
  185. 185. 
    Zhu Z, Bossart KN, Bishop KA, Crameri G, Dimitrov AS et al. 2008. Exceptionally potent cross-reactive neutralization of Nipah and Hendra viruses by a human monoclonal antibody. J. Infect. Dis. 197:846–53
    [Google Scholar]
  186. 186. 
    Playford EG, Munro T, Mahler SM, Elliott S, Gerometta M et al. 2020. Safety, tolerability, pharmacokinetics, and immunogenicity of a human monoclonal antibody targeting the G glycoprotein of henipaviruses in healthy adults: a first-in-human, randomised, controlled, phase 1 study. Lancet Infect. Dis. 20:445–54
    [Google Scholar]
  187. 187. 
    Mudur GS. 2019. Deal on Nipah compassionate response. Telegraph India June 6. https://www.telegraphindia.com/health/deal-on-nipah-compassionate-response/cid/1691941
    [Google Scholar]
  188. 188. 
    Zhu Z, Chakraborti S, He Y, Roberts A, Sheahan T et al. 2007. Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies. PNAS 104:12123–28
    [Google Scholar]
  189. 189. 
    Traggiai E, Becker S, Subbarao K, Kolesnikova L, Uematsu Y et al. 2004. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat. Med. 10:8871–75
    [Google Scholar]
  190. 190. 
    Pinto D, Sauer MM, Czudnochowski N, Low JS, Tortorici MA et al. 2021. Broad betacoronavirus neutralization by a stem helix–specific human antibody. Science 373:1109–16
    [Google Scholar]
  191. 191. 
    Fernandez E, Kose N, Edeling MA, Adhikari J, Sapparapu G et al. 2018. Mouse and human monoclonal antibodies protect against infection by multiple genotypes of Japanese encephalitis virus. mBio 9:e00008–1
    [Google Scholar]
  192. 192. 
    Goo L, Debbink K, Kose N, Sapparapu G, Doyle MP et al. 2019. A protective human monoclonal antibody targeting the West Nile virus E protein preferentially recognizes mature virions. Nat. Microbiol. 4:71–77
    [Google Scholar]
  193. 193. 
    Barba-Spaeth G, Dejnirattisai W, Rouvinski A, Vaney MC, Medits I et al. 2016. Structural basis of potent Zika-dengue virus antibody cross-neutralization. Nature 536:48–53
    [Google Scholar]
  194. 194. 
    de Alwis R, Smith SA, Olivarez NP, Messer WB, Huynh JP et al. 2012. Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions. PNAS 109:7439–44
    [Google Scholar]
  195. 195. 
    Guzman MG, Alvarez M, Halstead SB. 2013. Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Arch. Virol. 158:1445–59
    [Google Scholar]
  196. 196. 
    Katzelnick LC, Zambrana JV, Elizondo D, Collado D, Garcia N et al. 2021. Dengue and Zika virus infections in children elicit cross-reactive protective and enhancing antibodies that persist long term. Sci. Transl Med. 13:eabg9478
    [Google Scholar]
  197. 197. 
    Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW et al. 2013. The global distribution and burden of dengue. Nature 496:504–7
    [Google Scholar]
  198. 198. 
    Dejnirattisai W, Wongwiwat W, Supasa S, Zhang X, Dai X et al. 2015. A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus. Nat. Immunol. 16:170–77
    [Google Scholar]
  199. 199. 
    Buchman A, Gamez S, Li M, Antoshechkin I, Li HH et al. 2020. Broad dengue neutralization in mosquitoes expressing an engineered antibody. PLOS Pathog 16:e1008103 Erratum 2020. PLOS Pathog 16:4e1008545
    [Google Scholar]
  200. 200. 
    Sapparapu G, Fernandez E, Kose N, Bin C, Fox JM et al. 2016. Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice. Nature 540:443–47
    [Google Scholar]
  201. 201. 
    Hasan SS, Miller A, Sapparapu G, Fernandez E, Klose T et al. 2017. A human antibody against Zika virus crosslinks the E protein to prevent infection. Nat. Commun. 8:14722
    [Google Scholar]
  202. 202. 
    Tatar M, Keeshin SW, Mailliard M, Wilson FA 2020. Cost-effectiveness of universal and targeted hepatitis C virus screening in the United States. JAMA Netw. Open 3:e2015756
    [Google Scholar]
  203. 203. 
    Bailey JR, Flyak AI, Cohen VJ, Li H, Wasilewski LN et al. 2017. Broadly neutralizing antibodies with few somatic mutations and hepatitis C virus clearance. JCI Insight 2:e92872
    [Google Scholar]
  204. 204. 
    Mankowski MC, Kinchen VJ, Wasilewski LN, Flyak AI, Ray SC et al. 2018. Synergistic anti-HCV broadly neutralizing human monoclonal antibodies with independent mechanisms. PNAS 115:E82–91
    [Google Scholar]
  205. 205. 
    Law M, Maruyama T, Lewis J, Giang E, Tarr AW et al. 2008. Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge. Nat. Med. 14:25–27
    [Google Scholar]
  206. 206. 
    Kinchen VJ, Zahid MN, Flyak AI, Soliman MG, Learn GH et al. 2018. Broadly neutralizing antibody mediated clearance of human hepatitis C virus infection. Cell Host Microbe 24:717–30.e5
    [Google Scholar]
  207. 207. 
    World Health Organ 2021. Ebola virus disease. World Health Organization https://www.who.int/health-topics/ebola#tab=tab_1
  208. 208. 
    Gaudinski MR, Coates EE, Novik L, Widge A, Houser KV et al. 2019. Safety, tolerability, pharmacokinetics, and immunogenicity of the therapeutic monoclonal antibody mAb114 targeting Ebola virus glycoprotein (VRC 608): an open-label phase 1 study. Lancet 393:889–98
    [Google Scholar]
  209. 209. 
    Sivapalasingam S, Kamal M, Slim R, Hosain R, Shao W et al. 2018. Safety, pharmacokinetics, and immunogenicity of a co-formulated cocktail of three human monoclonal antibodies targeting Ebola virus glycoprotein in healthy adults: a randomised, first-in-human phase 1 study. Lancet Infect. Dis. 18:884–93
    [Google Scholar]
  210. 210. 
    Corti D, Misasi J, Mulangu S, Stanley DA, Kanekiyo M et al. 2016. Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science 351:1339–42
    [Google Scholar]
  211. 211. 
    Bornholdt ZA, Herbert AS, Mire CE, He S, Cross RW et al. 2019. A two-antibody pan-ebolavirus cocktail confers broad therapeutic protection in ferrets and nonhuman primates. Cell Host Microbe 25:49–58.e5
    [Google Scholar]
  212. 212. 
    Qiu X, Wong G, Audet J, Bello A, Fernando L et al. 2014. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 514:47–53
    [Google Scholar]
  213. 213. 
    Gilchuk P, Kuzmina N, Ilinykh PA, Huang K, Gunn BM et al. 2018. Multifunctional pan-ebolavirus antibody recognizes a site of broad vulnerability on the ebolavirus glycoprotein. Immunity 49:363–74.e10
    [Google Scholar]
  214. 214. 
    Herbert AS, Froude JW, Ortiz RA, Kuehne AI, Dorosky DE et al. 2020. Development of an antibody cocktail for treatment of Sudan virus infection. PNAS 117:3768–78
    [Google Scholar]
  215. 215. 
    King LB, Milligan JC, West BR, Schendel SL, Ollmann Saphire E. 2019. Achieving cross-reactivity with pan-ebolavirus antibodies. Curr. Opin. Virol. 34:140–48
    [Google Scholar]
  216. 216. 
    Gong X, Qian H, Zhou X, Wu J, Wan T et al. 2016. Structural insights into the Niemann-Pick C1 (NPC1)-mediated cholesterol transfer and Ebola infection. Cell 165:1467–78
    [Google Scholar]
  217. 217. 
    Ilinykh PA, Huang K, Santos RI, Gilchuk P, Gunn BM et al. 2020. Non-neutralizing antibodies from a Marburg infection survivor mediate protection by Fc-effector functions and by enhancing efficacy of other antibodies. Cell Host Microbe 27:976–91.e11
    [Google Scholar]
  218. 218. 
    Macneil A, Nichol ST, Spiropoulou CF. 2011. Hantavirus pulmonary syndrome. Virus Res 162:138–47
    [Google Scholar]
  219. 219. 
    Linderholm M, Elgh F. 2001. Clinical characteristics of hantavirus infections on the Eurasian continent. Curr. Top. Microbiol. Immunol. 256:135–51
    [Google Scholar]
  220. 220. 
    Engdahl TB, Crowe JEJr. 2020. Humoral immunity to hantavirus infection. mSphere 5:e00482–20
    [Google Scholar]
  221. 221. 
    Engdahl TB, Kuzmina NA, Ronk AJ, Mire CE, Hyde MA et al. 2021. Broad and potently neutralizing monoclonal antibodies isolated from human survivors of New World hantavirus infection. Cell Rep 35:109086
    [Google Scholar]
  222. 222. 
    Wang Q, Ma T, Wu Y, Chen Z, Zeng H et al. 2019. Neutralization mechanism of human monoclonal antibodies against Rift Valley fever virus. Nat. Microbiol. 4:1231–41
    [Google Scholar]
  223. 223. 
    Fels JM, Maurer DP, Herbert AS, Wirchnianski AS, Vergnolle O et al. 2021. Protective neutralizing antibodies from human survivors of Crimean-Congo hemorrhagic fever. Cell 184:3486–501.e21
    [Google Scholar]
  224. 224. 
    Lindsey NP, Staples JE, Fischer M. 2018. Eastern equine encephalitis virus in the United States, 2003–2016. Am. J. Trop. Med. Hyg. 98:1472–77
    [Google Scholar]
  225. 225. 
    Meyer RF, Morse SA. 2008. Viruses and bioterrorism. Encyclopedia of Virology BWJ Mahy, MHV Van Regenmortel , pp. 406–411 Boston: Acad.
    [Google Scholar]
  226. 226. 
    Williamson LE, Gilliland T Jr., Yadav PK, Binshtein E, Bombardi R et al. 2020. Human antibodies protect against aerosolized Eastern Equine Encephalitis virus infection. Cell 183:1884–900.e23
    [Google Scholar]
  227. 227. 
    Williamson LW, Reeder KM, Bailey KW, Roy V, Fouch ME et al. 2021. Therapeutic alphavirus cross-reactive E1 human antibodies inhibit viral egress. Cell 184:4430–46.e22
    [Google Scholar]
  228. 228. 
    Pan Am. Health Organ 2017. Number of reported cases of chikungunya fever in the Americas, by country or territory 2016. Rep. Pan Am. Health Organ. Washington, DC: https://www3.paho.org/hq/index.php?option=com_docman&view=download&category_slug=2016-8379&alias=37867-number-reported-cases-chikungunya-fever-americas-2016-867&Itemid=270&lang=en
  229. 229. 
    Levi LI, Vignuzzi M. 2019. Arthritogenic alphaviruses: a worldwide emerging threat?. Microorganisms 7:133
    [Google Scholar]
  230. 230. 
    Powell LA, Miller A, Fox JM, Kose N, Klose T et al. 2020. Human mAbs broadly protect against arthritogenic alphaviruses by recognizing conserved elements of the Mxra8 receptor-binding site. Cell Host Microbe 28:699–711.e7
    [Google Scholar]
  231. 231. 
    Quiroz JA, Malonis RJ, Thackray LB, Cohen CA, Pallesen J et al. 2019. Human monoclonal antibodies against chikungunya virus target multiple distinct epitopes in the E1 and E2 glycoproteins. PLOS Pathog. 15:e1008061
    [Google Scholar]
  232. 232. 
    Kose N, Fox JM, Sapparapu G, Bombardi R, Tennekoon RN et al. 2019. A lipid-encapsulated mRNA encoding a potently neutralizing human monoclonal antibody protects against chikungunya infection. Sci. Immunol. 4:eaaw6647
    [Google Scholar]
  233. 233. 
    Fox JM, Long F, Edeling MA, Lin H, van Duijl-Richter MKS et al. 2015. Broadly neutralizing alphavirus antibodies bind an epitope on E2 and inhibit entry and egress. Cell 163:1095–107
    [Google Scholar]
  234. 234. 
    Miner JJ, Cook LE, Hong JP, Smith AM, Richner JM et al. 2017. Therapy with CTLA4-Ig and an antiviral monoclonal antibody controls chikungunya virus arthritis. Sci. Transl. Med. 9:eaah3438
    [Google Scholar]
  235. 235. 
    August A, Attarwala HZ, Himansu S, Kalidindi S, Lu S et al. 2021. A phase 1 trial of lipid-encapsulated mRNA encoding a monoclonal antibody with neutralizing activity against Chikungunya virus. Nat. Med. 27:2224–33
    [Google Scholar]
  236. 236. 
    Moss B, Smith GL. 2021. Poxviridae: the viruses and their replication. Fields Virology: DNA Viruses PM Howley, DM Knipe, JL Cohen, BA Damania , pp. 573–613 Philadelphia: Lippincott Williams Wilkins
    [Google Scholar]
  237. 237. 
    Mucker EM, Wollen-Roberts SE, Kimmel A, Shamblin J, Sampey D, Hooper JW. 2018. Intranasal monkeypox marmoset model: Prophylactic antibody treatment provides benefit against severe monkeypox virus disease. PLOS Negl. Trop. Dis. 12:e0006581
    [Google Scholar]
  238. 238. 
    Gilchuk I, Gilchuk P, Sapparapu G, Lampley R, Singh V et al. 2016. Cross-neutralizing and protective human antibody specificities to poxvirus infections. Cell 167:684–94.e9
    [Google Scholar]
  239. 239. 
    Walsh SR, Seaman MS. 2021. Broadly neutralizing antibodies for HIV-1 prevention. Front. Immunol. 12:712122
    [Google Scholar]
  240. 240. 
    Ferrari G, Haynes BF, Koenig S, Nordstrom JL, Margolis DM, Tomaras GD. 2016. Envelope-specific antibodies and antibody-derived molecules for treating and curing HIV infection. Nat. Rev. Drug Discov. 15:823–34
    [Google Scholar]
  241. 241. 
    Caskey M, Klein F, Nussenzweig MC. 2019. Broadly neutralizing anti-HIV-1 monoclonal antibodies in the clinic. Nat. Med. 25:547–53
    [Google Scholar]
  242. 242. 
    Chahine EB, Durham SH. 2021. Ibalizumab: the first monoclonal antibody for the treatment of HIV-1 infection. Ann. Pharmacother. 55:230–39
    [Google Scholar]
  243. 243. 
    Jenkins A. 2018. Pandemic Prevention Platform (P3). DARPA. https://www.darpa.mil/program/pandemic-prevention-platform
  244. 244. 
    Stokes J Jr., Weibel R, Halenda R, Reilly CM, Hilleman MR. 1962. Enders' live measles-virus vaccine with human immune globulin. I. Clinical reactions. Am. J. Dis. Child 103:366–72
    [Google Scholar]
  245. 245. 
    Siber GR, Werner BG, Halsey NA, Reid R, Almeido-Hill J et al. 1993. Interference of immune globulin with measles and rubella immunization. J. Pediatr. 122:204–11
    [Google Scholar]
  246. 246. 
    Cent. Dis. Control Prev 2018. Rabies biologics currently available—United States, 2018. Centers for Disease Control and Prevention. https://www.cdc.gov/rabies/specific_groups/hcp/biologic.html
  247. 247. 
    Schillie S, Vellozzi C, Reingold A, Harris A, Haber P et al. 2018. Prevention of hepatitis B virus infection in the United States: recommendations of the Advisory Committee on Immunization Practices. MMWR Recomm. Rep. 67:1–31
    [Google Scholar]
  248. 248. 
    Babcock GJ, Broering TJ, Hernandez HJ, Mandell RB, Donahue D et al. 2006. Human monoclonal antibodies directed against toxins A and B prevent Clostridium difficile-induced mortality in hamsters. Infect. Immun. 74:6339–47
    [Google Scholar]
  249. 249. 
    Reimann KA, Lin W, Bixler S, Browning B, Ehrenfels BN et al. 1997. A humanized form of a CD4-specific monoclonal antibody exhibits decreased antigenicity and prolonged plasma half-life in rhesus monkeys while retaining its unique biological and antiviral properties. AIDS Res. Hum. Retroviruses 13:933–43
    [Google Scholar]
  250. 250. 
    Maynard JA, Maassen CB, Leppla SH, Brasky K, Patterson JL et al. 2002. Protection against anthrax toxin by recombinant antibody fragments correlates with antigen affinity. Nat. Biotechnol. 20:597–601
    [Google Scholar]
  251. 251. 
    Mazumdar S. 2009. Raxibacumab. mAbs 1:531–38
    [Google Scholar]
  252. 252. 
    Johnson S, Oliver C, Prince GA, Hemming VG, Pfarr DS et al. 1997. Development of a humanized monoclonal antibody (MEDI- 493) with potent in vitro and in vivo activity against respiratory syncytial virus. J. Infect. Dis. 176:1215–24
    [Google Scholar]
  253. 253. 
  254. 254. 
    US Food Drug Admin 2021. Immune globulins. U.S. Food & Drug Administration https://www.fda.gov/vaccines-blood-biologics/approved-blood-products/immune-globulins
/content/journals/10.1146/annurev-immunol-042718-041309
Loading
/content/journals/10.1146/annurev-immunol-042718-041309
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error