Skip to main content
Log in

An Updated Perspective of Nano Schiff Base Complexes: Synthesis, Catalytic, Electrochemical, Optical, Crystalline Features and Pharmacological Activities

  • REVIEW
  • Published:
Reviews and Advances in Chemistry Aims and scope Submit manuscript

Abstract

Schiff bases are chemical compounds obtained via the conjugation reaction of ketones or aldehydes with amines. Schiff bases and its compounds are widely used in industries and also have significant pharmacological efficiencies including antitumor, antiviral, antibacterial, antifungal, anti-cancer and DNA binding. The most of these compounds exhibit outstanding catalytic activities. Nano-Schiff bases are deemed to be the most multitasking ligands as they form complexes with the metal atoms. They are called facilitating ligands because these compounds can be prepared easily by condensation. The complexes of transition metals are the essential metal complexes of these compounds. Nano-Schiff bases and its metal complexes are highly helpful in scavenging the free radicals and thus to balance living bodies from the hostile impacts of these radicals. It overcomes an independent sphere of research in chemistry due to the recent amazed research on Schiff bases. Although these compounds are widely experimented, the pharmacological activities with catalytic, electrochemical, optical and crystalline properties of these compounds have to need vigorous investigation. However, we demonstrate various synthesis mechanisms of nano-Schiff bases and the essential activities of metal complexes. The present systematic overview will intend to make a profile of catalytic, electrochemical, optical, crystalline properties and pharmacological activities of metal complexes containing nano Schiff bases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Scheme 2.
Fig. 5.
Fig. 6.
Fig. 7.
Scheme 3.
Fig. 8.
Scheme 4.
Fig. 9.
Fig. 10.
Fig. 11.
Scheme 5.
Scheme 6.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Scheme 7.
Scheme 8.
Fig. 16.
Scheme 9.
Scheme 10.
Scheme 11.
Fig. 17.
Fig. 18.
Scheme 12.
Fig. 19.
Fig. 20.
Scheme 13.
Scheme 14.
Fig. 21.
Scheme 15.
Scheme 16.
Fig. 22.
Scheme 17.
Scheme 18.
Fig. 23.
Scheme 19.
Scheme 20.
Scheme 21.
Scheme 22.
Scheme 23.
Scheme 24.
Scheme 25.
Scheme 26.
Scheme 27.
Fig. 24.
Fig. 25.
Fig. 26.
Scheme 28.
Scheme 29.
Scheme 30.
Fig. 27.
Scheme 31.
Fig. 28.
Fig. 29.
Fig. 30.
Scheme 32.
Scheme 33.
Scheme 34.

Similar content being viewed by others

REFERENCES

  1. Zare, N., Zabardasti, A., Mohammadi, A., Azarbani, F., and Kakanejadifard, A., J. Iran. Chem. Soc., 2019, vol. 16, p. 1501.

    Article  CAS  Google Scholar 

  2. Panigrahi, A., Are, V.N., Jain, S., Nayak, D., Giri, S., and Sarma, T.K., ACS Appl. Mater. Interfaces, 2020, vol. 12, no. 5, p. 5389.

    Article  CAS  PubMed  Google Scholar 

  3. Zülfikaroglu, A., Ataol, C.Y., Çelikoglu, E., Çelikoglu, U., and Idil, O., J. Mol. Struct., 2020, vol. 1199, p. 127012.

  4. Taha, R.H., Saleh, N.M., Elhady, H.A., and Khodairy, M.M., Appl. Organomet. Chem., 2019, https://doi.org/10.1002/aoc.5207

  5. Sankarganesh, M., Jose, P.A., Raja, J.D., Kesavan, M.P., Vadivel, M., Rajesh, J., Jeyamurugan, R., Kumar, R.S., and Karthikeyan, S., J. Photochem. Photobiol., 2017, vol. 176, p. 44.

    Article  CAS  Google Scholar 

  6. Qu, J., Zhao, X., Ma, P.X., and Guo, B., Acta Biomater., 2017, vol. 58, p. 168.

    Article  CAS  PubMed  Google Scholar 

  7. Adwin, J.P., Sankarganesh, M., Dhaveethu, R.J., and Sukkur, S.S., J. Fluoresc., 2020, vol. 30, p. 471.

    Article  CAS  Google Scholar 

  8. Dabiri, M., Koohshari, M., Shafipour, F., Kasmaei, M., Salari, P., and MaGee, D., J. Iran. Chem. Soc., 2016, vol. 13, p. 1265.

    Article  CAS  Google Scholar 

  9. Moosavi-Zare, A.R., Goudarziafshar, H., and Saki, K., Appl. Organomet. Chem., 2017, vol. 13, p. 1265.

    Google Scholar 

  10. Naeimi, A., Honarmand, M., Sedri, A., Ultrason. Sonochem., 2018, vol. 32, no. 1, e3968.

  11. Elshafaie, A., Abdel-Rahman, L.H., Abu-Dief, A.M., Hamdan, S.K., Ahmed A.M., and Ibrahim, E.M.M., NANO: Brief Rep. Rev., 2018, vol. 13, no. 7, p. 1850074.

  12. Du, Y., Song, Y., Hao, J., Cai, K., Liu, N., Yang, L., and Wang, L., Talanta, 2019, vol. 198, p. 316.

    Article  CAS  PubMed  Google Scholar 

  13. Ahmed, A.H., Rev. Inorg. Chem., 2014, vol. 34, p. 153.

    Article  CAS  Google Scholar 

  14. Haggag, S.M.S. and Abdel-Hamid, I.A.M., J. Therm. Anal. Calorim., 2015, vol. 119, p. 737.

    Article  CAS  Google Scholar 

  15. Mohammadikish, M. and Talebi, M., Powder Technol., 2017, vol. 313, p. 169.

    Article  CAS  Google Scholar 

  16. Hu, Q., Hu, S., Fleming, E., Lee, J.Y., and Luo, Y., Int. J. Biol. Macromol., 2020, vol.152, p. 437.

    Article  CAS  Google Scholar 

  17. Bhargava, S. and Uma, V., Sep. Sci. Technol., 2018, vol. 54, no. 7, p. 1182.

    Article  CAS  Google Scholar 

  18. Gao, X., Li J., and Gao, W., Colloid J., 2009, vol. 71, p. 302.

    Article  CAS  Google Scholar 

  19. Saghatforoush, L.A., Mehdizadeh, R., and Chalabian, F., Transition Met. Chem., 2010, vol. 35, p. 903.

    CAS  Google Scholar 

  20. Saghatforoush, L.A., Mehdizadeh, R., and Chalabian, F., J. Chem. Pharm. Res., 2011, vol. 3, p. 691.

    CAS  Google Scholar 

  21. Yang, X.L., Zhong, G.Q., and Wu, L., J. Chem., 2013, vol. 2013, p. 436090.

  22. Rashad, M.M., Hassan, A.M., Nassar, A.M., Ibrahim, N.M., and Mourtada, A., Appl. Phys. A, 2014, vol. 117, p. 877.

    Article  CAS  Google Scholar 

  23. Elemike, E.E., Dare, E.O., Samuel, I.D., and Onwuka, J.C., J. Appl. Res. Technol., 2016, vol. 14, no. 1, p. 38.

    Article  Google Scholar 

  24. Sheikhshoaie, I., Tohidiyan, Z., and Khaleghi, M., Int. J. Nano Dimens., 2016, vol. 7, p. 127.

    Google Scholar 

  25. Tohidiyan, Z. and Sheikhshoaie, I., Rend. Fis. Acc. Lincei, 2017, vol. 28, p. 405.

    Article  Google Scholar 

  26. Ahmadi, L.K. and Shirmohammadzadeh, L., J. Nanostruct. Chem., 2017, vol. 7, p. 179.

    Article  CAS  Google Scholar 

  27. Mahalakshmi, N., Vanitha, C., Sureshkumar, R., and Kuppusamy, M.R., Int. J. Innovative Res. Adv. Eng., 2017, vol. 4, p. 87.

    Google Scholar 

  28. Khalil, A.M., Abdel-Monem, R.A., Darwesh, O.M., Hashim, A.I., Nada, A.A., and Rabie, S.T., J. Chem., 2017, vol. 2017, p. 1434320.

  29. Dai, T., Wang, C., Wang, Y., Xu, W., Hu, J., and Cheng, Y., ACS Appl. Mater. Interfaces, 2018, vol. 10, no. 17, p. 15163.

    Article  CAS  PubMed  Google Scholar 

  30. Zare, N. and Zabardasti, A., Appl. Organomet. Chem., 2018, vol. 33, no. 1, p. e4687.

  31. Shebl, M., Saleh, A.A., Khalil, S.M.E., Dawy M., and Ali, A.A.M., Curr. Sci. Int., 2018, vol. 7, p. 376.

    Google Scholar 

  32. Samy, F. and Taha, A., Egypt. J. Chem., 2018, vol. 61, p. 731.

    Google Scholar 

  33. Sajjadi, M., Baran, N.Y., Baran, T., Nasrollahzadeh, M., Tahsili M.R., and Shokouhimehr, M., Sep. Purif. Technol., 2019, vol. 237, p. 116383.

  34. Tavassoli, M., Montazerozohori, M., R. Naghiaha, Sadeghi, H., Masoudiasl, A., Joohari, S., Lopez, E.V., and Mahmoudi, G., Mater. Sci. Eng., C, 2020, vol. 11, p. 110642. https://doi.org/10.1016/j.msec.2020.110642

  35. Zhang, H., Fei, J., Yan, X., Wang, A., and Li, J., Adv. Funct. Mater., 2014, vol. 25, no. 8, p. 1193.

    Article  CAS  Google Scholar 

  36. Ismail, T.M., Ghamry, M.A., Abu-El-Wafa, S.M., and Sallam, D.F., Mod. Chem., 2015, vol. 3, p. 18.

    Article  CAS  Google Scholar 

  37. Melha, K.S.A.A., Al-Hazmi, G.A.A., and Refat, M.S., Russ. J. Gen. Chem., 2017, vol. 87, p. 3043.

    Article  Google Scholar 

  38. Li, Z., Zhang, L., Tang, C., and Yin, C., Pharm. Res., 2017, vol. 34, p. 2829.

    Article  CAS  PubMed  Google Scholar 

  39. Aly, H.M., Taha, R.H., El-deeb N.M., and Alshehri, A., Inorg. Chem. Front., 2018, vol. 5, p. 454.

    Article  CAS  Google Scholar 

  40. Jose, P.A., Raja, J.D., Sankarganesh, M., and Rajesh, J., J. Photochem. Photobiol., B, 2017, vol. 178, p. 143.

    Article  CAS  Google Scholar 

  41. Jawoor, S.S., Patil, S.A., Kumbar, M., and Ramawadagi, P.B., J. Mol. Struct., 2018, vol. 1164, p. 378.

    Article  CAS  Google Scholar 

  42. Taha, R.H., Synthesis and Characterization of Nanocomplexes by Green Chemistry and Their Applications in Different Fields, Green Chemistry Applications, Eyvaz, M. and Yüksel, E., Eds., IntechOpen, 2019. https://doi.org/10.5772/intechopen.83558

    Book  Google Scholar 

  43. Wu, D., Guo, L., and Li, S.J., J. Mol. Struct., 2020, vol. 1199, p. 126938.

  44. Qi, X.H., Wu, Z.M., Wang, S.B., Wang, B.X., Wang, L.L., Li H., and Guo, Q., J. Coord. Chem., 2019, vol. 72, no. 14, p. 2310.

    Article  CAS  Google Scholar 

  45. Yang, M., Zhang, N., Zhang, T., Yin X., and Shen, J., Drug Delivery, 2020, vol. 27, no. 1, p. 367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ali, A.A., Al-Hassani, R.M., Hussain, D.H., Rheima, A.M., and Meteab, H.S., Drug Invention Today, 2020, vol. 14, p. 31.

    Google Scholar 

  47. Li, J., Li, M., Tian, L., Qiu, Y., Yu, Q., Wang, X., Guo, R., and He, Q., Int. J. Pharm., 2020, vol. 578, p. 119122.

  48. Ali, A., Al-Hassani, R., Hussain, D., Jabir, M., and Meteab, H., Nano Biomed. Eng., 2020, vol. 12, p. 75.

    Article  CAS  Google Scholar 

  49. Sujarania, S., Sironmani, T.A., and Ramu, A., Digest J. Nanomater. Biostruct., 2012, vol. 7, p. 1843.

    Google Scholar 

  50. Du, Z., Xiang, S., Zang, Y., Zhou, Y., Wang, C., Tang, H., Jin, T., and Zhang, X., Mol. Pharm., 2014, vol. 11, p. 3300.

    Article  CAS  PubMed  Google Scholar 

  51. Saif, M., El-Shafiy, H.F., Mashaly, M.M., Eid, M.F., Nabeel, A.I., and Fouad, R., J. Mol. Struct., 2016, vol. 1118, p. 75.

    Article  CAS  Google Scholar 

  52. Saif, M., El-Shafiy, H.F., Mashaly, M.M., Eid, M.F., Nabeel, A.I., and Fouad, R., J. Mol. Struct., 2017, vol. 1161, p. 26.

    Article  CAS  Google Scholar 

  53. Saif, M., El-Shafiy, H.F., Mashaly, M.M., Eid, M.F., Nabeel, A.I., and Fouad, R., J. Mol. Struct., 2018, vol. 1155, p. 765.

    Article  CAS  Google Scholar 

  54. Easmon, J., Puerstinger, G., Roth, T., Fiebig, H.H., Jenny, M., Jaeger, W., Heinisch, G., and Hofmann, J., Int. J. Cancer, 2001, vol. 94, p. 89.

    Article  CAS  PubMed  Google Scholar 

  55. Shebl, M., Saif, M., Nabeel, A.I., and Shokry, R., J. Mol. Struct., 2016, vol. 1118, p. 335.

    Article  CAS  Google Scholar 

  56. Liu, Y., Zhao, N., and Xu, F.J., ACS Appl. Mater. Interfaces, 2019, vol. 11, p. 34707.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, Y., Huang, F., Ren, C., Yang, L., Liu, J., Cheng, Z., Chu, L., and Liu, J., ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 15, p. 13016.

    Article  CAS  PubMed  Google Scholar 

  58. Taha, R.H., Curr. Sci. Int., 2015, vol. 4, p. 684.

    Google Scholar 

  59. Mandegani, Z., Asadi, Z., Asadi, M., Karbalaei-Heidari H.R., and Rastegari, B., Dalton Trans., 2016, vol. 45, no. 15, p. 6592.

    Article  CAS  PubMed  Google Scholar 

  60. Asadi, Z., Nasrollahi, N., Karbalaei-Heidari, H., Eigner, V., Dusek, M., Mobaraki, N., and Pournejati, R., Spectrochim. Acta, Part A, 2017, vol. 178, p. 125.

    Article  CAS  Google Scholar 

  61. Gomez-Machuca, H., Quiroga-Campano, C., Zapata-Torres, G., and Jullian, C., ACS Omega, 2020, vol. 5, no. 12, p. 6928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bezaatpour, A., Behzad, M., Jahed, V., Amiri, M., Mansoori, Y., Rajabalizadeh, Z., and Sarvi, S., React. Kinet., Mech. Catal., 2012, vol. 107, p. 367.

    Article  CAS  Google Scholar 

  63. Rayati, S. and Abdolalian, P., Appl. Catal., A, 2013, vol. 456, p. 240.

  64. Grivani, G., Khalaji, A.D., Fejfarova, K., Dusek, M., Tahmasebi, V., and Delkhosh, S., J. Iran. Chem. Soc., 2014, vol. 11, p. 953.

    Article  CAS  Google Scholar 

  65. Jafarpour, M., Rezaeifard, A., Yasinzadeh, V., and Kargar, H., RSC Adv., 2015, vol. 5, p. 38460.

    Article  CAS  Google Scholar 

  66. Abdel-Rahman, L.H. and Abu-Dief, A.M., Catal. Lett., 2016, vol. 146, p. 1373.

    Article  CAS  Google Scholar 

  67. Mahdavi, H., Nikoorazm, M., Ghorbani-Choghamarani, A., and Arshadi, S., J. Porous Mater., 2016, vol. 23, p. 75.

    Article  CAS  Google Scholar 

  68. Konch, T.J., Sharma, M., Satyanarayana, L., Hazarika, A., Karunakar, G.V., and Bania, K.K., Chem. Select., 2016, vol. 1, p. 6606.

    Google Scholar 

  69. Kianfar, A.H., Dehghani, P., and Momeni, M.M., J. Mater. Sci.: Mater. Electron., 2016, vol. 27, p. 3368.

    CAS  Google Scholar 

  70. Goudarziafshar, H., Moosavi-Zare, A.R., Saki K., and Abdolmaleki, M., J. Chin. Chem. Soc., 2017, vol. 64, p. 1496.

    Article  CAS  Google Scholar 

  71. Kianfar, A.H. and Dostani, M., J. Mater. Sci.: Mater. Electron., 2017, vol. 28, p. 7353.

    CAS  Google Scholar 

  72. Veisi, H., Azadbakht, R., Saeidifar, F., and Abdi, M.R., Catal. Lett., 2017, vol. 147, p. 976.

    Article  CAS  Google Scholar 

  73. Wang, X., Qiu, Z., Liu, Q., Chen, X., Tao, S., Shi, C., Pang, M., and Liang, C., Catal. Lett., 2017, vol. 147, p. 517.

    Article  CAS  Google Scholar 

  74. Allahresani, A., J. Iran. Chem. Soc., 2017, vol. 14, p. 1051.

    Article  CAS  Google Scholar 

  75. Parsaee, Z., J. Mol. Struct., 2017, vol. 1146, p. 644.

    Article  CAS  Google Scholar 

  76. Tavallaei, H., Jafarpour, M., Feizpour, F., Rezaeifard, A., and Farrokhi, A., ACS Omega, 2019, vol. 4, p. 3601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Naeimi, A. and Ekrami-Kakhki, M.S., Appl. Organomet. Chem., 2020, vol. 34, p. e5453.

  78. Naeimi, A., Honarmand, M., and Sedri, A., Ultrason. Sonochem., 2019, vol. 50, p. 331.

    Article  CAS  PubMed  Google Scholar 

  79. Naeimi, A., Abbasspour S., and Torabizadeh, S.A., Artif. Cells, Nanomed., Biotechnol., 2020, vol. 48, p. 560.

    Article  CAS  Google Scholar 

  80. Yousef, T.A., J. Mol. Struct., 2020, vol. 1215, p. 128180.

  81. Yousefi M., and Salavati-Niasari, M., High Temp. Mater. Proc., 2012, vol. 31, p. 733.

    Article  CAS  Google Scholar 

  82. Shiri-Yekta, Z., Yaftian M.R., and Nilchi, A., Korean J. Chem. Eng., 2013, vol. 30, p. 1644.

    Article  CAS  Google Scholar 

  83. Jiao, T., Xing, R., Zhang, Q., Lv, Y., Zhou, J., and Gao, F., J. Nanomater., 2013, p. 297564.

  84. Asadi, Z., Asadi, M., Firuzabadi, F.D., and Shorkaei, M.R., J. Ind. Eng. Chem., 2014, vol. 20, no. 6, p. 4227.

    Article  CAS  Google Scholar 

  85. Jimoh, A.A., Helal, A., Shaikh, M.N., Aziz, M.A., Yamani, Z.H., Al-Ahmed, A., and Kim, J.P., J. Nanomater., 2015, vol. 16, no. 1, p. 190.

    Google Scholar 

  86. Ibrahim, E.M.M., Abdel-Rahman, L.H., Abu-Dief, A.M, Elshafaie, A., Hamdan, S.K., and Ahmed, A.M., Phys. Scr., 2018, vol. 93, no. 5, p. 055801.

  87. Setoodehkhah, M. and Momeni, S., J. Inorg. Organomet. Polym. Mater., 2018, vol. 28, p. 1098.

    Article  CAS  Google Scholar 

  88. Elseman, A.M., Rayan, D.A., and Rashad, M.M., J. Mater. Sci.: Mater. Electron., 2016, vol. 27, p. 2652.

    CAS  Google Scholar 

  89. Liu, L. and Zhang, J., Front. Optoelectron. China, 2011, vol. 4, p. 199.

    Article  Google Scholar 

  90. Salehi, M. and Arabsarhangi, E., Int. Nano Lett., 2015, vol. 5, p. 141.

    Article  CAS  Google Scholar 

  91. Mahmoodi, N.O., Aghajani, N., and Ghavidast, A., J. Mol. Struct., 2017, vol. 1128, p. 21.

    Article  CAS  Google Scholar 

  92. Saeednia, S., Iranmanesh, P., Ardakani, M.H., and Ahmadi, M., J. Iran. Chem. Soc., 2018, vol. 15, p. 1163.

    Article  CAS  Google Scholar 

  93. Senda, N., Fujiwara, I., and Murakami, Y., Appl. Clay Sci., 2019, vol. 183, p. 105310.

  94. Ali, A.A., Al-Hassani, R.M., Hussain, D.H., Rheima, A.M., Abdul A.N., and Meteab, H.S., Drug Invention Today, 2020, vol. 14, no. 1, p. 31.

    Google Scholar 

  95. Hanifehpour, Y., Saraei, N., Asl, S.M., and Joo, S.W., J. Inorg. Organomet. Polym., 2012, vol. 22, p. 1271.

    Article  CAS  Google Scholar 

  96. Grivani, G., Eigner, V., Dušek, M., Sadeghi, B., and Khalaji, A.D., Russ. J. Coord. Chem., 2015, vol. 41, p. 456.

    Article  CAS  Google Scholar 

  97. Shah, R.K., Abou-Melha, K.S., Saad, F.A., Yousef, T., Al-Hazmi, G.A.A., Elghalban, M.G., Khedr, A.M., and El-Metwaly, N., J. Therm. Anal. Calorim., 2016, vol. 123, p. 731.

    Article  CAS  Google Scholar 

  98. Mohammadikish, M. and Bagheri, F., Monatsh. Chem., 2017, vol. 148, p. 1393.

    Article  CAS  Google Scholar 

  99. Mohammadikish, M. and Ghanbari, S., J. Solid State Chem., 2018, vol. 264, p. 86.

    Article  CAS  Google Scholar 

  100.  El-Metwaly, N., Farghaly, T.A., Althagafi, I., and Elghalban, M.G., J. Mol. Struct., 2019, vol. 1190, p. 86.

    Article  CAS  Google Scholar 

  101.  Gutiérrez-Argüelles, D., Portillo, M.C., Portillo-Moreno, O., Palomino-Merino, R., Mora-Ramírez, M.A., Rubio-Rosas, E., Hernández-Téllez, G., and Gutiérrez-Pérez, R., Opt. Mater., 2019, vol. 96, p. 30.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Kudrat E. Zahan.

Ethics declarations

None declared and self-funded.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uddin, E., Bitu, N.A., Asraf, A. et al. An Updated Perspective of Nano Schiff Base Complexes: Synthesis, Catalytic, Electrochemical, Optical, Crystalline Features and Pharmacological Activities. rev. and adv. in chem. 12, 57–95 (2022). https://doi.org/10.1134/S2634827622010056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2634827622010056

Keywords:

Navigation