Skip to main content
Log in

Effect of the Nanomaterials on the Thermolysis of HMX: a Short Review

  • REVIEW
  • Published:
Reviews and Advances in Chemistry Aims and scope Submit manuscript

Abstract

1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX) is a high energetic material constituting a major portion of nitramine-based solid propellants. The thermal decomposition performance of HMX can influence the combustion characteristic of HMX-based propellants. The reduction in the thermal decomposition temperature of HMX as well as increased thermal heat released during the decomposition is among the important factors for controlling combustion characteristics of HMX-based solid propellants. The addition of nanocatalysts to HMX can alter the decomposition characteristics of HMX and therefore, can be used to tailor the combustion performance of propellants containing HMX. The present short review focuses on the effect of various nanometer-size materials used to enhance the thermolysis of HMX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Benhammada, A. and Trache, D., Appl. Spectrosc. Rev., 2020, vol. 55, no. 8, p. 724.

    Article  CAS  Google Scholar 

  2. Benhammada, A., Trache, D., Chelouche, S., and Mezroua, A., Z. Anorg. Allg. Chem., 2021, vol. 647, no. 4, p. 312.

    Article  CAS  Google Scholar 

  3. Trache, D., Klapötke, T.M., Maiz, L., Abd-Elghany, M., and DeLuca, L.T., Green Chem., 2017, vol. 19, no. 20, p. 4711.

    Article  CAS  Google Scholar 

  4. Nair, S., Mathew, S., and Nair, C.R., Mater. Today: Proc., 2020, vol. 25, p. 144.

    CAS  Google Scholar 

  5. Hanafi, S., Trache, D., Abdous, S., Bensalem, Z., and Mezroua, A., Chin. J. Energ. Mater., 2019, vol. 27, no. 4, p. 326.

    Google Scholar 

  6. Yan, Q.L., Zhao, F.Q., Kuo, K.K., Zhang, X.H., Zeman, S., and DeLuca, L.T., Prog. Energy Combust. Sci., 2016, vol. 57, p. 75.

    Article  Google Scholar 

  7. Qu, Y. and Babailov, S.P., J. Mater. Chem. A, 2018, vol. 6, no. 5, p. 1915.

    Article  CAS  Google Scholar 

  8. Sikder, A.K. and Sikder, N., J. Hazard. Mater., 2004, vol. 112, no. 1, p. 1.

    Article  CAS  PubMed  Google Scholar 

  9. Singh, H., Jahagirdar, N., and Banerjee, S., Def. Technol., 2019, vol. 15, no. 6, p. 837.

    Article  Google Scholar 

  10. Gao, B., Qiao, Z., and Yang, G., in Nanomaterials in Rocket Propulsion Systems, Yan, Q.-L., He, G.-Q., Liu, P.-J., and Gozin, M., Eds., Amsterdam: Elsevier, 2019, p. 31.

    Google Scholar 

  11. Trache, D. and DeLuca, L.T., Nanomaterials, 2020, vol. 10, no. 12, p. 2347.

    Article  CAS  PubMed Central  Google Scholar 

  12. Han, G., Xiao-ting, H., Xiang, K., Jie, L., Gazi, H., Lei, X., Teng, C., Ying-Ying, Z., and Wei, J., Def. Technol., 2017, vol. 13, no. 5, p. 323.

    Article  Google Scholar 

  13. Hanafi, S., Trache, D., He, W., Xie, W-X., Mezroua, A., and Yan, Q-L., Thermochim. Acta, 2020, vol. 692, p. 178747.

  14. Stepanov, R.S., Kruglyakova, L.A., Astakhov, A.M., and Pekhotin, K.V., Combust., Explos. Shock Waves (Engl. Transl.), 2004, vol. 40, no. 5, p. 576.

  15. Hanafi, S., Trache, D., He, W, Xie, W-X., Mezroua, A., and Yan, Q-L., J. Phys. Chem. C, 2020, vol. 124, no. 9, p. 5182.

    Article  CAS  Google Scholar 

  16. Vara, J.A., Dave, P.N., and Chaturvedi, S., Def. Technol., 2019, vol. 15, no. 4, p. 629.

    Article  Google Scholar 

  17. Pivkina, A.N., Muravyev, N.V., Monogarov, K.A., Fomenkov, I.V., and Schoonman, J., in Energetic Nanomaterials, Zarko, V.E. and Gromov, A.A., Eds., Amsterdam: Elsevier, 2016, p. 193.

    Google Scholar 

  18. Elbasuney S., Ismael S., and Yehia M., J. Energ. Mater., 2021. https://doi.org/10.1080/07370652.2021.1982071

  19. Xue, Z-H., Zhang, X-X., Huang, B., Cheng, J., Wang, K., Yang, Z., and Yan, Q-L., Cryst. Growth Des., 2021, vol. 21, no. 8, p. 4488.

    Article  CAS  Google Scholar 

  20. Zhang, M., Tan, Y., Zhao, X., Zhang, J., Huang, S., Zhai, Z., Liu, Y., and Yang, Z., CrystEngComm, 2020, vol. 22, no. 1, p. 61.

    Article  CAS  Google Scholar 

  21. Stepanov, R.S., Kruglyakova, L.A., and Pekhotin, K.V., Combust., Explos. Shock Waves (Engl. Transl.), 2000, vol. 36, p. 618.

  22. Cohen-Nir, E. and Sannier, H., Propellants, Explos., Pyrotech., 1985, vol. 10, p. 163.

    Article  CAS  Google Scholar 

  23. Hussain, G., and Rees G.J., Propellants, Explos., Pyrotech., 1995, vol. 20, no. 2, p. 74.

    Article  CAS  Google Scholar 

  24. Cao, X., Wei, Z., Song, J., Zhang, H., Qu, Y., and Xie, F., Materials., 2020, vol. 13, no. 12, p. 2811.

    Article  CAS  PubMed Central  Google Scholar 

  25. Kolahalam, L.A., Kasi Viswanath, I.V., Diwakar, B.S., Govindh, B., Reddy, V., and Murthy, Y.L.N., Mater. Today: Proc., 2019, vol. 18, p. 2182.

    Google Scholar 

  26. Macwan, D.P., Dave, P.N., and Chaturvedi, S., J. Mater. Sci., 2011, vol. 46, no. 11, p. 3669.

    Article  CAS  Google Scholar 

  27. Samal, S.S., and Manohara, S.R., Mater. Today: Proc., 2019, vol. 10, p. 151.

    Google Scholar 

  28. Sahani, S., and Sharma, Y.C., Food Chem., 2021, vol. 342, 128318.

  29. Vara, J.A., Dave, P.N., and Ram, V.R., Nano-Struct. Nano-Objects, 2019, vol. 20, 100372.

  30. Chaturvedi, S., Dave, P.N., and Shah, N.K., J. Saudi Chem. Soc., 2012, vol. 16, no. 3, p. 307.

    Article  CAS  Google Scholar 

  31. Chaturvedi, S., and Dave, P.N., J. Saudi Chem. Soc., 2013, vol. 17, no. 2, p. 135.

    Article  CAS  Google Scholar 

  32. Abdelkareem, M.A., Sayed, E.T., Alawadhi, H., and Alami, A.H., Int. J. Hydrogen Energy, 2020, vol. 45, no. 35, p. 17311.

    Article  CAS  Google Scholar 

  33. Feng, H.P., Tang, L., Zeng, G.M., Zhou, Y., Deng, Y.C., Ren, X., Song, B., Liang, C., Wei, M.Y., and Yu, J.F., Adv. Colloid Interface Sci., 2019, vol. 267, p. 26.

    Article  CAS  PubMed  Google Scholar 

  34. Yang, Y., Zhang, C., Lai, C., Zeng, G., Huang, D., Cheng, M., Wang, J., Chen, F., Zhou, C., and Xiong, W., Adv. Colloid Interface Sci., 2018, vol. 254, p. 76.

    Article  CAS  PubMed  Google Scholar 

  35. Yang, G., Zhu, C., Du, D., Zhu, J., and Lin, Y., Nanoscale, 2015, vol. 7, no. 34, p. 14217.

    Article  CAS  PubMed  Google Scholar 

  36. Chimene, D., Alge, D.L., and Gaharwar, A.K., Adv. Mater., 2015, vol. 27, no. 45, p. 7261.

    Article  CAS  PubMed  Google Scholar 

  37. Sobczak-Kupiec, A., Venkatesan, J., AlAnezi, A.A., Walczyk, D., Farooqi, A., Malina, D., Hosseini, S.H., and Tyliszczak, B., Nanomed.: Nanotechnol., Biol. Med., 2016, vol. 12, no. 8, p. 2459.

    Article  CAS  Google Scholar 

  38. Santhosh, C., Velmurugan, V., Jacob, G., Jeong, S.K., Grace, A.N., and Bhatnagar, A., Chem. Eng. J., 2016, vol. 306, p. 1116.

    Article  CAS  Google Scholar 

  39. Wei T., Zhang Y., Xu K., Ren Z., Gao H., and Zhao F., RSC Adv., 2015, vol. 5, no. 86, p.70323.

    Article  CAS  Google Scholar 

  40. Zhu, Q., Xiao, C., Xie, X., Zheng, B.H., Li, S.B., and Luo, G., Propellants, Explos., Pyrotech., 2019, vol. 44, no. 4, p. 438.

    Article  CAS  Google Scholar 

  41. Elbasuney, S., Hamed, A., Yehia, M., Gobara, M, and Mokhtar, M., J. Energ. Mater., 2021. https://doi.org/10.1080/07370652.2021.1905107

  42. Piermarini, G.J., Block, S., and Miller, P.J., J. Phys. Chem., 1987, vol. 91, no. 14, p. 3872.

    Article  CAS  Google Scholar 

  43. Ye, C.C., An, Q., Zhang, W.Q., and Goddard III, W.A., J. Phys. Chem. C, 2019, vol. 123, no. 14, p. 9231.

    Article  CAS  Google Scholar 

  44. Jiang, Z., Li, S.F., Zhao, F.Q., Chen, P., Yin, C.M., and Li, S.W., J. Propul. Technol., 2002, vol. 23, p. 258.

    CAS  Google Scholar 

  45. Dubey, R., Srivastava, P., Kapoor, I.P.S., and Singh, G., Thermochim. Acta, 2012, vol. 549, p. 102.

    Article  CAS  Google Scholar 

  46. Elbasuney, S. and El-Sayyad, G.S., J. Mater. Sci: Mater. Electron., 2020, vol. 31, no. 17, p. 14930.

    CAS  Google Scholar 

  47. Zu, Y., Zhang, Y., Xu, K., and Zhao, F., RSC Adv., 2016, vol. 6, no. 37, p. 31046.

    Article  CAS  Google Scholar 

  48. Gromov, A., Strokova, Y., Kabardin, A., Vorozhtsov, A., and Teipel, U., Propellants, Explos., Pyrotech., 2009, vol. 34, no. 6, p. 506.

    Article  CAS  Google Scholar 

  49. Muravyev, N., Pivkina, A., Schoonman, J., and Monogarov, K., Int. J. Energ. Mater. Chem. Propul., 2014, vol. 13, no. 3, p. 211.

    CAS  Google Scholar 

  50. Elbasuney, S., Yehia, M., Hamed, A., Ismael, S., Mokhtar, M., Elsaka, E., Gobara, M., Saleh, A., and El-Sayyad, G.S., J. Mater. Sci: Mater. Electron., 2021, vol. 32, no. 4, p. 4185.

    CAS  Google Scholar 

  51. Wei, Z.X., Xu, Y.Q., Liu, H.Y., and Hu, C.W., J. Hazard. Mater., 2009, vol. 165, no. 1, p. 1056.

    Article  CAS  PubMed  Google Scholar 

  52. Xiao, X., Zhang, Z., Cai, L., Li, Y., Yan, Z., and Wang, Y., J. Alloys Compd., 2019, vol. 797, p. 548.

    Article  CAS  Google Scholar 

  53. Parveen, S., Nguyen, H.H., Premkumar, T., Puschmann, H., and Govindarajan, S., New J. Chem., 2020, vol. 44, no. 29, p. 12729.

    Article  Google Scholar 

  54. Tao, L., Guo, P., Zhu, W., Li, T., Zhou, X., Fu, Y., Yu, C., and Ji, H., Chin. J. Catal., 2020, vol. 41, no. 12, p. 1855.

    Article  CAS  Google Scholar 

  55. Gonçalves, J.M., Rocha, D.P., Silva, M.N., Martins, P.R., Nossol, E., Angnes, L., Rout, C.S., and Muñoz, R.A.A., J. Mater. Chem. C, 2021, vol. 9, no. 25, p. 7852.

    Article  Google Scholar 

  56. Singh, S., Srivastava, P., Kapoor, I.S., and Singh, G., J. Exp. Nanosci., 2015, vol. 10, no. 1, p. 29.

    Article  CAS  Google Scholar 

  57. Li, Y., Zhang, T., Li, J., Li, C., Guo, Z., and Ma, H., J. Solid State Chem., 2020, vol. 288, p. 121426.

  58. Yang, Q., Liu, G., and Liu, Y., Ind. Eng. Chem. Res., 2018, vol. 57, no. 1, p. 1.

    Article  CAS  Google Scholar 

  59. Rani, D.S., and Meera, M.R., Mater. Today: Proc., 2021, vol. 37, p. 1248.

    Google Scholar 

  60. Peña, M.A., and Fierro, J.L.G., Chem. Rev., 2001, vol. 101, no. 7, p. 1981.

    Article  PubMed  CAS  Google Scholar 

  61. Wei, Z.X., Wang, Y., Zhang, X.J., and Hu, C.W., Thermochim. Acta, 2010, vol. 499, no. 1, p. 111.

    Article  CAS  Google Scholar 

  62. Zhang, T., Guo, Y., Li, C., Li, Y., Li, J., Zhao, F., and Ma, H., Adv. Powder Technol., 2020, vol. 31, no. 11, p. 4510.

    Article  CAS  Google Scholar 

  63. Wei, Z.X., Chi, Y.N., Hu, C.W., and Liu, H.Y., Propellants, Explos., Pyrotech., 2009, vol. 34, no. 5, p. 394.

    Article  CAS  Google Scholar 

  64. Wang, Y., Gong, L., Li, Y., and Wei, Z., Chin. J. Chem. Eng., 2010, vol. 18, no. 3, p. 397.

    Article  Google Scholar 

  65. Wang, J., Wang, W., Wang, J., and Xu, K., Carbon Lett., 2020, vol. 30, no. 4, p. 425.

    Article  Google Scholar 

  66. Sun, X., Huang, C., Wang, L., Liang, L., Cheng, Y., Fei, W., and Li, Y., Adv. Mater., 2021, vol. 33, no. 6, p. 2001105.

  67. Zhang, K., Suh, J.M., Lee, T.H., Cha, J.H., Choi, J.W., Jang, H.W., Varma, R.S., and Shokouhimehr, M., Nano Convergence, 2019, vol. 6, no. 1, p. 6.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wang, W., Guo, S., Zhang, D., and Yang, Z., J. Saudi Chem. Soc., 2019, vol. 23, no. 2, p. 133.

    Article  CAS  Google Scholar 

  69. Isert, S., Xin, L., Xie, J., and Son, S.F., Combust. Flame, 2017, vol. 183, p. 322.

    Article  CAS  Google Scholar 

  70. Thakur, K., and Kandasubramanian, B., J. Chem. Eng. Data, 2019, vol. 64, no. 3, p. 833.

    Article  CAS  Google Scholar 

  71. Melo, J.P., Ríos, P.L., Povea, P., Morales-Verdejo, C., and Camarada, M.B., ACS Omega, 2018, vol. 3, no. 7, p. 7278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Elbasuney, S., Yehia, M., Hamed, A., Mokhtar, M., Gobara, M., Saleh, A., Elsaka, E., and El-Sayyad, G.S., J. Inorg. Organomet. Polym., 2021, vol. 31, no. 6, p. 2293.

    Article  CAS  Google Scholar 

  73. Singh, G., Kapoor, I.P.S., Dubey, R., and Srivastava, P., Mater. Sci. Eng., B, 2011, vol. 176, no. 2, p. 121.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to DST for the assistance. RS and RT are also thankful to DST project no. SR/NM/NT-1014/2016 (G) for Junior Research Fellowship and Research Associate fellowship, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pragnesh Dave.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dave, P., Sirach, R., Chaturvedi, S. et al. Effect of the Nanomaterials on the Thermolysis of HMX: a Short Review. rev. and adv. in chem. 12, 96–106 (2022). https://doi.org/10.1134/S2634827622010020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2634827622010020

Keywords:

Navigation