Skip to main content
Log in

Microstructural and Mechanical Properties of A356/Ni Alloys Produced by the Mechanochemical Method

  • PHYSICAL METALLURGY AND HEAT TREATMENT
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

In this study, A356 powder was alloyed with elemental Nickel (Ni) powder in different ratios using a mechanochemical alloying method. Alloyed A356/XNi powders were cold pressed along one axis under a load of 350 MPa and sintered at 600°C. To determine the effect of intermetallic phases formed on the microstructure in proportion to the amount of Ni, the A356/XNi alloys were characterized by X-ray diffraction (XRD) analysis, density, and microhardness values. As a result, after mechanical alloying, the spherical microstructure of the A356 alloy turned into a spongy form due to the sponge-like Ni elemental powders. After sintering, it was determined by optical microscopy and scanning electron microscopy (SEM) examinations that the grain size of A356/XNi alloys increased with an increasing amount of Ni. In addition, it was determined that the relative density and amount of porosity increased with an increasing amount of Ni. According to the XRD analysis results, it was determined that AlNi, Al3Ni2, Al3Ni and AlFeNi intermetallic phases formed in the microstructure due to the mechanochemical and sintering process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Samal, P.K. and Newkirk, J.W., Powder Metallurgy, Materials Park, OH: ASM Int., 2015, vol. 7.

    Book  Google Scholar 

  2. Sherif El-Eskandarany, M., Mechanical Alloying: Nanotechnology, Materials Science and Powder Metallurgy, New York: William Andrew, 2015.

    Google Scholar 

  3. Benjamin, J.S. and Volin, T.E., The mechanism of mechanical alloying, Metall. Trans., 1974, vol. 5, no. 8, pp. 1929–1934.

    Article  CAS  Google Scholar 

  4. Suryanarayana, C., Mechanical alloying and milling, Prog. Mater. Sci., 2001, vol. 46, pp. 1–84.

    Article  CAS  Google Scholar 

  5. Sopicka-Lizer, M., High-Energy Ball Milling: Mechanochemical Processing of Nanopowders, Elsevier, 2010.

    Book  Google Scholar 

  6. Murty, B.S. and Ranganathan, S., Novel materials synthesis by mechanical alloying/milling, Int. Mater. Rev., 1998, vol. 43, no. 3, pp. 101–141.

    Article  CAS  Google Scholar 

  7. Liu, X.Q., Li, C.J., You, X., Xu, Z.Y., Li, X., Bao, R., Tao, J.M., and Yi, J.H., Size-dependent effects of Ti powders in the pure aluminum matrix composites reinforced by carbon nanotubes, J. Alloys Compd., 2020, vol. 823, no. 153824, pp. 1–9.

    Google Scholar 

  8. Tan, L., Li, Y., Deng, W., Liu, Y., Liu, F., Nie, Y., and Jiang, L., Tensile properties of three newly developed Ni-base powder metallurgy superalloys, J. Alloys Compd., 2019, vol. 804, pp. 322–330.

    Article  CAS  Google Scholar 

  9. Dileep, B.P., Ravikumar, V., and Vital, H.R., Mechanical and corrosion behavior of Al-Ni-Sic metal matrix composites by powder metallurgy, Mater. Today: Proc., 2018, vol. 5, no. 5, pp. 12257–12264.

    CAS  Google Scholar 

  10. Hou, L., Li, B., Wu, R., Cui, L., Ji, P., Long, R., Zhang, J., Li, X., Dong, A., and Sun, B., Microstructure and mechanical properties at elevated temperature of Mg–Al–Ni alloys prepared through powder metallurgy, J. Mater. Sci. Technol., 2017, vol. 33, no. 9, pp. 947–953.

    Article  CAS  Google Scholar 

  11. Jiang, H., Ye, S., Ma, R., and Yu, P., Influences of sintering parameters on shape-retention ability of porous Ni3Al intermetallic fabricated by powder metallurgy, Intermetallics, 2019, vol. 105, pp. 48–55.

    Article  CAS  Google Scholar 

  12. Shevtsova, L., Mali, V., Bataev, A., Anisimov, A., and Dudina, D., Microstructure and mechanical properties of materials obtained by spark plasma sintering of Ni3Al–Ni powder mixtures, Mater. Sci. Eng., A, 2020, vol. 773, no. 138882, pp. 1–8.

    Article  Google Scholar 

  13. Mahday, A.A., Sherif El-Eskandarany, M., Ahmed, H.A., and Amer, A.A., Mechanically induced solid state carburization for fabrication of nanocrystalline ZrC refractory material powders, J. Alloys Compd., 2020, vol. 299, nos. 1–2, pp. 244–253.

    Article  Google Scholar 

  14. Semel, F.J. and Lados, D.A., Porosity analysis of PM materials by helium pycnometry, Powder Metall., 2006, vol. 49, no. 2, pp. 173–182.

    Article  CAS  Google Scholar 

  15. Khorsand, H., Yoozbashizade, H., Habibi, S.M., Janghorban, K., Nangir, A., and Reihani, S.M.S., Carbon, porosity and fatigue in sintered steel, Met. Powder Rep., 2002, vol. 57, no. 4, pp. 32–36.

    Google Scholar 

  16. Danninger, H., de Oro Calderon, R., and Gierl-Mayer, C., Powder metallurgy and sintered materials, in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, 2017, pp. 1–57.

    Google Scholar 

  17. Jiang, H., Ye, S., Ma, R., and Yu, P., Influences of sintering parameters on shape-retention ability of porous Ni3Al intermetallic fabricated by powder metallurgy, Intermetallics, 2019, vol. 105, pp. 48–55.

    Article  CAS  Google Scholar 

  18. Abuthakir, J., Subramanian, R., Kavitha, M., Venkatesh, G., Krishna kumar, K., and Manikandan, P., Corrosion studies of Alx–Ni insitu intermetallics reinforced Al metal matrix composites, Mater. Today: Proc., 2020, vol. 28, no. 2, pp. 1158–1163.

    CAS  Google Scholar 

  19. Kwiecien, I., Bobrowski, P., Wierzbicka-Miernik, A., Litynska-Dobrzynska, L., and Wojewoda-Budka, J., Growth kinetics of the selected intermetallic phases in Ni/Al/Ni system with various nickel substrate microstructure, Nanomaterials, 2019, vol. 9, no. 2, pp. 1–18.

    Article  Google Scholar 

  20. Rzyman, K. and Moser, Z., Calorimetric studies of the enthalpies of formation of Al3Ni2, AlNi, and AlNi3, Prog. Mater. Sci., 2004, vol. 49, nos. 3–4, pp. 581–606.

    Article  CAS  Google Scholar 

  21. Elkady, O.A., Abolkassem, S.A., Elsayed, A.H., Hussein, W.A, and Hussein, K.F.A., Microwave absorbing efficiency of Al matrix composite reinforced with nano-Ni/SiC particles, Results Phys., 2019, vol. 12, pp. 687–700.

    Article  Google Scholar 

  22. Bao, C.M., Dahlborg, U., Adkins, N., and Calvo-Dahlborg, M., Structural characterisation of Al–Ni powders produced by gas atomisation, J. Alloys Compd., 2009, vol. 481, nos. 1–2, pp. 199–206.

    Article  CAS  Google Scholar 

  23. Deng, Z., Yin, H., Zhang, C., Zhang, G., Li, W., Zhang, T., Zhang, R., Jiang, X., and Qu, X., Microstructure and mechanical properties of Cu–12Al–xNi alloy prepared using powder metallurgy, Mater. Sci. Eng., A, 2019, vol. 759, pp. 241–251.

    Article  CAS  Google Scholar 

  24. German, R.M., Suri, P., and Park, S.J., Review: Liquid phase sintering, J. Mater. Sci., 2009, vol. 44, pp. 1–39.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tansel Tunçay.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tunçay, T. Microstructural and Mechanical Properties of A356/Ni Alloys Produced by the Mechanochemical Method. Russ. J. Non-ferrous Metals 63, 201–211 (2022). https://doi.org/10.3103/S1067821222020110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821222020110

Keywords:

Navigation