Skip to main content
Log in

Simulated orientational morphology from the measured transient rheology of polycarbonate–carbon fiber composites

  • Original Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

A Correction to this article was published on 08 June 2022

This article has been updated

Abstract

We prepared carbon fiber (CF) reinforced polycarbonates (CFR-PC) by co-rotating twin screw extruder and injection molding. We simulated the orientational morphology of CFR-PC by inverse calculation from the measured transient stress curve using 8 mm disk rotational rheometer. The shear stress evolution was expressed by a function of the Fredholm integral of the first kind; total stress was expressed by a linear combination contributed from a stress at each orientation state. We employed an extended White–Metzner model with Dinh–Armstrong flow-fiber coupling term as a constitutive equation for the evaluation of stress at each orientation state. The probability density of each orientation state was determined by the Tikhonov regularization method from the measured stress overshoot. Finally, the orientation distribution functions (ODFs) of CFR-PC were determined by maximum entropy method from the determined probability density of orientation state. For the CFR-PCs, the simulated morphology by the ODF was well consistent with the morphology obtained by optical microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. Advani SG, Tucker CL (1987) The use of tensors to describe and predict fiber orientation in short fiber composites. J Rheol 31:751–784

    Article  CAS  Google Scholar 

  2. Advani SG, Tucker CL (1990) Closure approximations for three-dimensional structure tensors. J Rheol 34:367–386

    Article  Google Scholar 

  3. Ausias G, Agassant JF, Vincent M, Lafleur PG, Lavoie PA, Carreau PJ (1992) Rheology of short glass fiber reinforced polypropylene. J Rheol 36:525–542

    Article  CAS  Google Scholar 

  4. Barbosa SE, Bibbó MA (2000) Fiber motion and rheology of suspensions with uniform fiber orientation. J Polym Sci Part B Polym Phys 38:1788–1799

    Article  CAS  Google Scholar 

  5. Barbosa SE, Ercoli DR, Bibbó MA, Kenny J (1994) Rheology of short-fiber composites: a systematic approach. Compos Struct 27:83–91

    Article  Google Scholar 

  6. Bertóti R, Böhlke T (2017) Flow-induced anisotropic viscosity in short FRPs. Mech Adv Mater Mod Process 3:1

    Article  Google Scholar 

  7. Breuer K, Stommel M, Korte W (2019) Analysis and evaluation of fiber orientation reconstruction methods. J Compos Sci 3:67

    Article  CAS  Google Scholar 

  8. Choi GM, Park M, Jeong SY, Lee HS (2021) Orientation effect on the rheology of graphene oxide dispersions in isotropic phase, ordered isotropic biphase, and discotic phase. J Rheol 65:791–806

    Article  CAS  Google Scholar 

  9. Chung DH, Kwon TH (2001) Improved model of orthotropic closure approximation for flow induced fiber orientation. Polym Compos 22:636–649

    Article  CAS  Google Scholar 

  10. Chung DH, Kwon TH (2002) Invariant-based optimal fitting closure approximation for the numerical prediction of flow-induced fiber orientation. J Rheol 46:169–194

    Article  CAS  Google Scholar 

  11. Cieslinski MJ, Wapperom P, Baird DG (2015) Influence of fiber concentration on the startup of shear flow behavior of long fiber suspensions. J Nonnewton Fluid Mech 222:163–170

    Article  CAS  Google Scholar 

  12. Cintra JS, Tucker CL (1995) Orthotropic closure approximations for flow-induced fiber orientation. J Rheol 39:1095–1122

    Article  CAS  Google Scholar 

  13. Clemons TD, Bradshaw M, Toshniwal P, Chaudhari N, Stevenson AW, Lynch J, Fear MW, Wood FM, Iyer KS (2018) Coherency image analysis to quantify collagen architecture: implications in scar assessment. RSC Adv 8:9661–9669

    Article  CAS  Google Scholar 

  14. Dinh SM, Armstrong RC (1984) A rheological equation of state for semiconcentrated fiber suspensions. J Rheol 28:207–227

    Article  CAS  Google Scholar 

  15. Doghri I, Tinel L (2006) Micromechanics of inelastic composites with misaligned inclusions: numerical treatment of orientation. Comput Methods Appl Mech Eng 195:1387–1406

    Article  Google Scholar 

  16. Eberle APR, Baird DG, Wapperom P, Vélez-García GM (2009) Obtaining reliable transient rheological data on concentrated short fiber suspensions using a rotational rheometer. J Rheol 53:1049–1068

    Article  CAS  Google Scholar 

  17. Eberle APR, Baird DG, Wapperom P, Vélez-García GM (2009) Using transient shear rheology to determine material parameters in fiber suspension theory. J Rheol 53:685–705

    Article  CAS  Google Scholar 

  18. Eberle APR, Vélez-García GM, Baird DG, Wapperom P (2010) Fiber orientation kinetics of a concentrated short glass fiber suspension in startup of simple shear flow. J Nonnewton Fluid Mech 165:110–119

    Article  CAS  Google Scholar 

  19. Férec J, Bertevas E, Ausias G, Phan-Thien N (2022) Macroscopic modeling of the evolution of fiber orientation during flow. In: Papathanasiou TD, Bénard A (eds) Flow-induced alignment in composite materials, 2nd edn. Woodhead Publishing, pp 77–121

    Chapter  Google Scholar 

  20. Folgar F, Tucker CL (1984) Orientation behavior of fibers in concentrated suspensions. J Reinf Plast Compos 3:98–119

    Article  CAS  Google Scholar 

  21. Geng L, Mittal N, Zhan C, Ansari F, Sharma PR, Peng X, Hsiao BS, Söderberg LD (2018) Understanding the mechanistic behavior of highly charged cellulose nanofibers in aqueous systems. Macromolecules 51:1498–1506

    Article  CAS  Google Scholar 

  22. Han K-H, Im Y-T (1999) Modified hybrid closure approximation for prediction of flow-induced fiber orientation. J Rheol 43:569–589

    Article  CAS  Google Scholar 

  23. Hand GL (1962) A theory of anisotropic fluids. J Fluid Mech 13:33–46

    Article  Google Scholar 

  24. Hine PJ, Lusti HR, Gusev AA (2004) On the possibility of reduced variable predictions for the thermoelastic properties of short fibre composites. Compos Sci Technol 64:1081–1088

    Article  CAS  Google Scholar 

  25. Huan-Chang T (2021) A constitutive equation for fiber suspensions in viscoelastic media. Phys Fluids 33:071702

    Article  CAS  Google Scholar 

  26. Jack DA, Smith DE (2004) Assessing the use of tensor closure methods with orientation distribution reconstruction functions. J Compos Mater 38:1851–1871

    Article  Google Scholar 

  27. Jack DA, Smith DE (2007) The effect of fibre orientation closure approximations on mechanical property predictions. Compos Part A: Appl Sci Manuf 38:975–982

    Article  CAS  Google Scholar 

  28. Karl T, Gatti D, Böhlke T, Frohnapfel B (2021) Coupled simulation of flow-induced viscous and elastic anisotropy of short-fiber reinforced composites. Acta Mech 232:2249–2268

    Article  Google Scholar 

  29. Karl T, Gatti D, Frohnapfel B, Böhlke T (2021) Asymptotic fiber orientation states of the quadratically closed Folgar-Tucker equation and a subsequent closure improvement. J Rheol 65:999–1022

    Article  CAS  Google Scholar 

  30. Keshtkar M, Heuzey M-C, Carreau PJ, Rajabian M, Dubois C (2010) Rheological properties and microstructural evolution of semi-flexible fiber suspensions under shear flow. J Rheol 54:197–222

    Article  CAS  Google Scholar 

  31. Kim SG, Ok CM, Lee HS (2018) Steady-state extensional viscosity of a linear polymer solution using a differential pressure extensional rheometer on a chip. J Rheol 62:1261–1270

    Article  CAS  Google Scholar 

  32. Lafrance CP, Pezolet M, Prud’homme RE (1991) Study of the distribution of molecular orientation in highly oriented polyethylene by x-ray diffraction. Macromolecules 24:4948–4956

    Article  CAS  Google Scholar 

  33. Li B, Guo Y, Steeman P, Bulters M, Yu W (2021) Wall effect on the rheology of short-fiber suspensions under shear. J Rheol 65:1169–1185

    Article  CAS  Google Scholar 

  34. Lipscomb GG, Denn MM, Hur DU, Boger DV (1988) The flow of fiber suspensions in complex geometries. J Nonnewton Fluid Mech 26:297–325

    Article  CAS  Google Scholar 

  35. Sepehr M, Carreau PJ, Grmela M, Ausias G, Lafleur PG (2004) Comparison of rheological properties of fiber suspensions with model predictions. J Polym Eng 24:579–610

    Article  CAS  Google Scholar 

  36. Marín-Santibáñez BM, Pérez-González J, de Vargas L (2010) Shear rheometry and visualization of glass fiber suspensions. Rheol Acta 49:177–189

    Article  CAS  Google Scholar 

  37. May D (2021) Integrated product development with fiber-reinforced polymers. Springer International Publishing, Cham

    Book  Google Scholar 

  38. Montgomery-Smith S, He WEI, Jack DA, Smith DE (2011) Exact tensor closures for the three-dimensional Jeffery’s equation. J Fluid Mech 680:321–335

    Article  Google Scholar 

  39. Nabergoj M, Urevc J, Halilovič M (2022) Function-based reconstruction of the fiber orientation distribution function of short-fiber-reinforced polymers. J Rheol 66:147–160

    Article  CAS  Google Scholar 

  40. Ngo TT, Nguyen HMK, Oh D-W (2021) Prediction of fiber rotation in an orifice channel during injection molding process. J Rheol 65:1361–1371

    Article  CAS  Google Scholar 

  41. Ogierman W (2021) A new model for time-efficient analysis of nonlinear composites with arbitrary orientation distribution of fibres. Compos Struct 273:114310

    Article  Google Scholar 

  42. Ortman K, Baird D, Wapperom P, Whittington A (2012) Using startup of steady shear flow in a sliding plate rheometer to determine material parameters for the purpose of predicting long fiber orientation. J Rheol 56:955–981

    Article  CAS  Google Scholar 

  43. Ouyang Z, Lin J, Wang Y, Yuan F (2018) Fiber orientation distribution and rheological properties of fiber suspension in a turbulent jet. Korea Aust Rheol J 30:55–63

    Article  Google Scholar 

  44. Papathanasiou TD (1997) 4-Flow-induced alignment in injection molding of fiber-reinforced polymer composites. In: Papathanasiou TD, Guell DC (eds) Flow-induced alignment in composite materials. Woodhead Publishing, pp 112–165

    Chapter  Google Scholar 

  45. Park JW, Yoon J, Cha J, Lee HS (2015) Determination of molecular weight distribution and composition dependence of monomeric friction factors from the stress relaxation of ultrahigh molecular weight polyethylene gels. J Rheol 59:1173–1189

    Article  CAS  Google Scholar 

  46. Park M, Lee HS (2020) Rotational motions of repulsive graphene oxide domains in aqueous dispersion during slow shear flow. J Rheol 64:29–41

    Article  CAS  Google Scholar 

  47. Petrich MP, Koch DL, Cohen C (2000) An experimental determination of the stress–microstructure relationship in semi-concentrated fiber suspensions. J Nonnewton Fluid Mech 95:101–133

    Article  CAS  Google Scholar 

  48. Phan-Thien N, Graham AL (1991) A new constitutive model for fibre suspensions: flow past a sphere. Rheol Acta 30:44–57

    Article  Google Scholar 

  49. Phelps JH, Tucker CL (2009) An anisotropic rotary diffusion model for fiber orientation in short- and long-fiber thermoplastics. J Nonnewton Fluid Mech 156:165–176

    Article  CAS  Google Scholar 

  50. Sepehr M, Ausias G, Carreau PJ (2004) Rheological properties of short fiber filled polypropylene in transient shear flow. J Nonnewton Fluid Mech 123:19–32

    Article  CAS  Google Scholar 

  51. Shaqfeh ESG, Fredrickson GH (1990) The hydrodynamic stress in a suspension of rods. Phys Fluids A: Fluid Dyn 2:7–24

    Article  CAS  Google Scholar 

  52. Tseng H-C, Chang R-Y, Hsu C-H (2013) Phenomenological improvements to predictive models of fiber orientation in concentrated suspensions. J Rheol 57:1597–1631

    Article  CAS  Google Scholar 

  53. Tseng H-C, Chang R-Y, Hsu C-H (2016) An objective tensor to predict anisotropic fiber orientation in concentrated suspensions. J Rheol 60:215–224

    Article  CAS  Google Scholar 

  54. Tseng H-C, Favaloro AJ (2019) The use of informed isotropic constitutive equation to simulate anisotropic rheological behaviors in fiber suspensions. J Rheol 63:263–274

    Article  CAS  Google Scholar 

  55. van Gurp M (1995) The use of rotation matrices in the mathematical description of molecular orientations in polymers. Colloid Polym Sci 273:607–625

    Article  Google Scholar 

  56. Verleye V, Couniot A, Dupret F (1994) Numerical prediction of fiber orientation in complex injection molded parts. Trans Eng Sci 4:303–312

    Google Scholar 

  57. Wang J, O’Gara JF, Tucker CL (2008) An objective model for slow orientation kinetics in concentrated fiber suspensions: Theory and rheological evidence. J Rheol 52:1179–1200

    Article  CAS  Google Scholar 

  58. Wang R, Rosen T, Zhan C, Chodankar S, Chen J, Sharma PR, Sharma SK, Liu T, Hsiao BS (2019) Morphology and flow behavior of cellulose nanofibers dispersed in glycols. Macromolecules 52:5499–5509

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from Dong-A university research fund (2022).

Funding

This work was funded by MOTIE (Grant no. 20000479, 20010315); Korea Institute of Science and Technology (Grant no. 2E30631); National Research Foundation of Korea (Grant no. 2019R1A5A8080326).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heon Sang Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Due to an unfortunate oversight an author name has been misspelled. It should be read: Seung Chan Ryu instead of Seungchan Ryu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmannezhad, J., Jeong, H.D., Ryu, S.C. et al. Simulated orientational morphology from the measured transient rheology of polycarbonate–carbon fiber composites. Korea-Aust. Rheol. J. 34, 197–210 (2022). https://doi.org/10.1007/s13367-022-00031-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-022-00031-0

Keywords

Navigation