Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 9, 2022

Adaptive space–time finite element methods for parabolic optimal control problems

  • Ulrich Langer EMAIL logo and Andreas Schafelner

Abstract

We present, analyze, and test locally stabilized space–time finite element methods on fully unstructured simplicial space–time meshes for the numerical solution of space–time tracking parabolic optimal control problems with the standard L2-regularization.We derive a priori discretization error estimates in terms of the local mesh-sizes for shape-regular meshes. The adaptive version is driven by local residual error indicators, or, alternatively, by local error indicators derived from a new functional a posteriori error estimator. The latter provides a guaranteed upper bound of the error, but is more costly than the residual error indicators. We perform numerical tests for benchmark examples having different features. In particular, we consider a discontinuous target in form of a first expanding and then contracting ball in 3d that is fixed in the 4d space– time cylinder.

JEL Classification: 49J20; 35K20; 65M60; 65M50; 65M15; 65Y05

Dedicated to Wolfgang L. Wendland on the occasion of his 85th birthday.


Funding statement: The authors would like to thank the Austrian Science Fund (FWF) for the financial support under the grant DK W1214-04.

Acknowledgment

The authorswould like to express their thanks to the anonymous referees for their helpful comments.

References

[1] R.A. Adams and J.J.F. Fournier, Sobolev Spaces, Academic Press & Elsevier, 2003.Search in Google Scholar

[2] T. Apel, A.-M. Sändig, and J. R. Whiteman, Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains, Math. Methods Appl. Sci., 19 (1996), No. 30, 63–85.10.1002/(SICI)1099-1476(19960110)19:1<63::AID-MMA764>3.0.CO;2-SSearch in Google Scholar

[3] I. Babuška, Error-bounds for finite element method, Numer. Math., 16 (1971), No. 4, 322–333.10.1007/BF02165003Search in Google Scholar

[4] I. Babuška and A.K. Aziz, Survey lectures on the mathematical foundation of the finite element method, In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Academic Press, New York, 1972, pp. 1–359,Search in Google Scholar

[5] R. E. Bank, P. S. Vassilevski, and L. T. Zikatanov, Arbitrary dimension convection–diffusion schemes for space–time discretizations., J. Comput. Appl. Math., 310 (2017), 19–31.10.1016/j.cam.2016.04.029Search in Google Scholar

[6] A. Borzì and V. Schulz, Computational Optimization of Systems Governed By Partial Differential Equations, Computational Science & Engineering 8, Society for Industrial and Applied Mathematics (SIAM), 2011.10.1137/1.9781611972054Search in Google Scholar

[7] D. Braess, Finite Elements. Theory, Fast Solvers and Applications in Solid Mechanics, Cambridge University Press, 2007.10.1017/CBO9780511618635Search in Google Scholar

[8] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, third ed, Texts in Applied Mathematics, Vol. 15, Springer, New York, 2008.10.1007/978-0-387-75934-0Search in Google Scholar

[9] C. Carstensen, M. Feischl, M. Page, and C. Praetorius, Axioms of adaptivity, Comput. Methods Appl. Math., 67 (2014), 1195–1253.10.1016/j.camwa.2013.12.003Search in Google Scholar

[10] E. Casas, C. Clason, and K. Kunisch, Parabolic control problems in measure spaces with sparse solutions, SIAM J. Control Optim., 51 (2013), No. 1, 28–63.10.1137/120872395Search in Google Scholar

[11] E. Casas, M.Mateos, and A. Rösch, Improved approximation rates for a parabolic control problem with an objective promoting directional sparsity, Comput. Optim. Appl., 70 (2018), 239–266.10.1007/s10589-018-9979-0Search in Google Scholar

[12] P. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér., 9 (1975), No. R-2, 77–84.10.1051/m2an/197509R200771Search in Google Scholar

[13] D. Devaud and C. Schwab, Space–time hp-approximation of parabolic equations, Calcolo, 55 (2018), No. 3, 1–23.10.1007/s10092-018-0275-2Search in Google Scholar

[14] D. Dier, Non-autonomous maximal regularity for forms of bounded variation, J. Math. Anal. Appl., 425 (2015), 33–54.10.1016/j.jmaa.2014.12.006Search in Google Scholar

[15] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal., 33 (1996), No. 3, 1106–1124.10.1137/0733054Search in Google Scholar

[16] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Springer, New York, 2004.10.1007/978-1-4757-4355-5Search in Google Scholar

[17] L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics 19, American Mathematical Society, Providence, Rhode Island, 2010.10.1090/gsm/019Search in Google Scholar

[18] S. Fackler, J.-L. Lions’ problem concerning maximal regularity of equations governed by non-autonomous forms, Ann. I. H. Poincaré, 34 (2017), 699–709.10.1016/j.anihpc.2016.05.001Search in Google Scholar

[19] W. Gong, M. Hinze, and Z.J. Zhou, Space–time finite element approximation of parabolic optimal control problems, J. Numer. Math., 20 (2012), No. 2, 111–145.10.1515/jnum-2012-0005Search in Google Scholar

[20] G. Haase and U. Langer, Multigrid Methods: From Geometrical to Algebraic Versions, Modern Methods in Scientific Computing and Applications (Eds. A. Bourlioux, M.J. Gander, and G. Sabidussi), Kluwer Academic Press, Dordrecht, 2002, pp. 103–154.10.1007/978-94-010-0510-4_4Search in Google Scholar

[21] R. Herzog, G. Stadler, and G.Wachsmuth, Directional sparsity in optimal control of partial differential equations, SIAM J. Control Optim., 50 (2012), No. 2, 943–963.10.1137/100815037Search in Google Scholar

[22] N. Heuer, On the equivalence of fractional-order Sobolev semi-norms, J. Math. Anal. Appl., 417 (2014), No. 2, 505–518.10.1016/j.jmaa.2014.03.047Search in Google Scholar

[23] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization with PDE Constraints, Mathematical Modelling: Theory and Applications, Vol. 23, Springer-Verlag, Berlin, 2008.Search in Google Scholar

[24] T. J. Hughes and A. Brooks, A multidimensional upwind scheme with no crosswind diffusion, In: Finite Element Methods for Convection Dominated Flows (Ed. T. J. Hughes), AMD34, ASME, New York, 1979.Search in Google Scholar

[25] T. J. Hughes, L. P. Franca, and G. M. Hulbert, A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advection–diffusive equations, Comput. Methods Appl. Mech. Engrg., 73 (1989), 173– 189.10.1016/0045-7825(89)90111-4Search in Google Scholar

[26] HYPRE: Scalable Linear Solvers and Multigrid Methods https://computing.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methodsSearch in Google Scholar

[27] C. Johnson and J. Saranen, Streamline diffusion methods for the incompressible Euler and Navier–Stokes equations, Math. Comp., 47 (1986), No. 175, 1–18.10.1090/S0025-5718-1986-0842120-4Search in Google Scholar

[28] O. A. Ladyžhenskaya, The Boundary Value Problems of Mathematical Physics, Applied Mathematical Sciences, Vol. 49, Springer-Verlag, New York, 1985, Translated from the Russian edition, Nauka, Moscow, 1973.Search in Google Scholar

[29] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967 (in Russian). Translated in Vol. 23, American Mathematical Soc., 1988.Search in Google Scholar

[30] U. Langer, S.Matculevich, and S. Repin, Guaranteed error bounds and local indicators for adaptive solvers using stabilised space–time IgA approximations to parabolic problems, Comput. Math. with Appl., 78 (2019), 2641–2671.10.1016/j.camwa.2019.04.009Search in Google Scholar

[31] U. Langer, S. Moore, and M. Neumüller, Space–time isogeometric analysis of parabolic evolution equations, Comput. Methods Appl. Mech. Engrg., 306 (2016), 342–363.10.1016/j.cma.2016.03.042Search in Google Scholar

[32] U. Langer, M. Neumüller, and A. Schafelner, Space–time finite element methods for parabolic evolution problems with variable coeflcients. In: Advanced Finite Element Methods with Applications – Selected Papers from the 30th Chemnitz Finite Element Symposium 2017 (Eds. T. Apel, U. Langer, A. Meyer, and O. Steinbach), LNCSE 128, Springer, Berlin, Heidelberg, New York, 2019, pp. 229–256.10.1007/978-3-030-14244-5_13Search in Google Scholar

[33] U. Langer and A. Schafelner, Adaptive space–time finite element methods for non-autonomous parabolic problems with distributional sources. Comput. Methods Appl. Math., 20 (2020), No. 4, 677–693.10.1515/cmam-2020-0042Search in Google Scholar

[34] U. Langer and A. Schafelner, Simultaneous space–time finite element methods for parabolic optimal control problems, In: Large-Scale Scientific Computing, 2021 (Eds. I. Lirkov and S.Margenov), LNCS, Vol. 13127, Springer, Cham, 2022, pp. 314– 321.10.1007/978-3-030-97549-4_36Search in Google Scholar

[35] U. Langer and A. Schafelner, Space–time hexahedral finite element methods for parabolic evolution problems, In: Domain Decomposition Methods in Science and Engineering (Eds. S. C. Brenner, E. T. S. Chung, A. Klawonn, P. Kwok, J. Xu, and J. Zou), LNCSE, Vol. 145, Springer, Cham, 2023.10.1007/978-3-030-95025-5_55Search in Google Scholar

[36] U. Langer, O. Steinbach, F. Tröltzsch, and H. Yang, Space–time finite element discretization of parabolic optimal control problems with energy regularization, SIAM J. Numer. Anal., 59 (2021), No. 2, 660–674.10.1137/20M1332980Search in Google Scholar

[37] U. Langer, O. Steinbach, F. Tröltzsch, and H. Yang, Unstructured space–time finite element methods for optimal control of parabolic equation, SIAM J. Sci. Comput., 43 (2021), No. 2, A744–A771.10.1137/20M1330452Search in Google Scholar

[38] J. L. Lions, Contrôle Optimal De Systèmes Gouvernés Par Des Équations Aux Dérivées Partielles, Dunod Gauthier-Villars, Paris, 1968.Search in Google Scholar

[39] J. M.Maubach, Local bisection refinement for n-simplicial grids generated by reflection, SIAM J. Sci. Comput., 16 (1995), No. 1, 210–227.10.1137/0916014Search in Google Scholar

[40] D. Meidner and B. Vexler, A priori error estimates for space–time finite element discretization of parabolic optimal control problems. Part I: Problems without control constraints, SIAM J. Control Optim., 47 (2008), No. 3, 1150–1177.10.1137/070694016Search in Google Scholar

[41] D. Meidner and B. Vexler, A priori error estimates for space–time finite element discretization of parabolic optimal control problems. Part II: Problems with control constraints, SIAM J. Control Optim., 47 (2008), No. 3, 1301–1329.10.1137/070694028Search in Google Scholar

[42] MFEM: Modular Finite Element Methods Library https://mfem.orgSearch in Google Scholar

[43] I. Neitzel, U. Prüfert, and T. Slawig, A smooth regularization of the projection formula for constrained parabolic optimal control problems, Numer. Funct. Anal. Optim., 33 (2011), No. 12, 1283–1315.10.1080/01630563.2011.597915Search in Google Scholar

[44] J. Nečas, Sur une méthode pour résoudre les équations aux dérivées partielles du type elliptique, voisine de la variationnelle, Ann. Scuola Norm. Sup. Pisa, 16 (1962), No. 4, 305–326.Search in Google Scholar

[45] L.A. Oganesjan and L.A. Ruchovetz, Variational Difference Methods for the Solution of Elliptic Equations, Izdatelstvo Akademi Nank Armjanskoj SSR, Erevan, 1979, (in Russian).Search in Google Scholar

[46] S. Repin, A Posteriori Estimates for Partial Differential Equations, de Gruyter, Berlin, 2008.10.1515/9783110203042Search in Google Scholar

[47] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.10.1137/1.9780898718003Search in Google Scholar

[48] L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comput., 54 (1990), No. 190, 483–493.10.1090/S0025-5718-1990-1011446-7Search in Google Scholar

[49] G. Stadler, Elliptic optimal control problems with L1-control cost and applications for the placement of control devices, Comput. Optim. Appl., 44 (2009), 159–181.10.1007/s10589-007-9150-9Search in Google Scholar

[50] O. Steinbach, Space–time finite element methods for parabolic problems, Comput. Methods Appl. Math., 15 (2015), No. 4, 551–566.10.1515/cmam-2015-0026Search in Google Scholar

[51] O. Steinbach, Improved Error Estimates for a Space–Time Finite Element Method for Parabolic Problems, Berichte aus dem Institut für Angewandte Mathematik, Bericht 2022/7, TU Graz, 2022.Search in Google Scholar

[52] O. Steinbach and H. Yang, Comparison of algebraic multigrid methods for an adaptive space–time finite-element discretization of the heat equation in 3D and 4D, Numer. Linear Algebra Appl., 25 (2018), No. 3, e2143.10.1002/nla.2143Search in Google Scholar

[53] O. Steinbach and H. Yang, Space–time finite element methods for parabolic evolution equations: discretization, a posteriori error estimation, adaptivity and solution, In: Space–Time Methods: Application to Partial Differential Equations (Eds. O. Steinbach and U. Langer), de Gruyter, Berlin, 2019, pp. 207–248.10.1515/9783110548488-007Search in Google Scholar

[54] O. Steinbach and M. Zank, Coercive space–time finite element methods for initial boundary value problems, Electron. Trans. Numer. Anal., 52 (2020), 154–194.10.1553/etna_vol52s154Search in Google Scholar

[55] R. Stevenson, The completion of locally refined simplicial partitions created by bisection, Math. Comp., 77 (2008), No. 261, 227–241.10.1090/S0025-5718-07-01959-XSearch in Google Scholar

[56] F. Tröltzsch, Optimal Control of Partial Differential Equations: Theory, Methods and Applications, Graduate Studies in Mathematics, Vol. 112, American Mathematical Society, Providence, Rhode Island, 2010.10.1090/gsm/112/07Search in Google Scholar

Received: 2021-05-10
Revised: 2021-09-17
Accepted: 2021-10-06
Published Online: 2022-12-09
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/jnma-2021-0059/html
Scroll to top button