Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 9, 2022

Guaranteed upper bounds for the velocity error of pressure-robust Stokes discretisations

  • Philip L. Lederer EMAIL logo and Christian Merdon

Abstract

This paper aims to improve guaranteed error control for the Stokes problem with a focus on pressure-robustness, i.e., for discretisations that compute a discrete velocity that is independent of the exact pressure. A Prager–Synge type result relates the velocity errors of divergence-free primal and perfectly equilibrated dual mixed methods for the velocity stress. The first main result of the paper is a framework with relaxed constraints on the primal and dual method. This enables to use a recently developed mass conserving mixed stress discretisation for the design of equilibrated fluxes and to obtain pressure-independent guaranteed upper bounds for any pressure-robust (not necessarily divergence-free) primal discretisation. The second main result is a provably efficient local design of the equilibrated fluxes with comparably low numerical costs. Numerical examples verify the theoretical findings and show that efficiency indices of our novel guaranteed upper bounds are close to one.

JEL Classification: 65N15; 65N30; 76D07; 76M10

Acknowledgment

Philip L. Lederer has been funded by the Austrian Science Fund (FWF) through the research program ‘Taming complexity in partial differential systems’ (F65) – project ‘Automated discretization in multiphysics’ (P10).

References

[1] N. Ahmed, G. R. Barrenechea, E. Burman, J. Guzmán, A. Linke, and C. Merdon, A pressure-robust discretization of Oseen’s equation using stabilization in the vorticity equation, SIAM J. Numer. Anal., 59 (2021), No. 5, 2746–2774.10.1137/20M1351230Search in Google Scholar

[2] M. Ainsworth and W. Dörfler, Reliable a posteriori error control for nonconformal finite element approximation of Stokes flow, Math. Comp., 74 (2005), No. 252, 1599–1619.10.1090/S0025-5718-05-01743-6Search in Google Scholar

[3] F. Bertrand and D. Boffi, The Prager–Synge theorem in reconstruction based a posteriori error estimation, In: 75 Years of Mathematics of Computation, November 1-3, 2018, ICERM, Vol. 754, Amer. Math. Soc. (AMS), 2020, p. 45.10.1090/conm/754/15152Search in Google Scholar

[4] D. Bofl and L. Gastaldi (eds.), Mixed Finite Elements, Compatibility Conditions, and Applications, Lecture Notes in Mathematics, Vol. 139, Springer, 2008.Search in Google Scholar

[5] D. Braess and J. Schöberl, Equilibrated residual error estimator for edge elements, Math. Comp., 77 (2008), 651–672.10.1090/S0025-5718-07-02080-7Search in Google Scholar

[6] P. Bringmann, C. Carstensen, and C. Merdon, Guaranteed velocity error control for the pseudostress approximation of the Stokes equations, Numer. Meth. Partial Differ. Equ., 32 (2016), No. 5, 1411–1432.10.1002/num.22056Search in Google Scholar

[7] C. Carstensen, M. Eigel, R. H.W. Hoppe, and C. Löbhard, A review of unified a posteriori finite element error control, Numerical Mathematics: Theory, Methods and Applications, 5 (2012), No. 4, 509–558.10.4208/nmtma.2011.m1032Search in Google Scholar

[8] C. Carstensen and C. Merdon, Computational survey on a posteriori error estimators for the Crouzeix–Raviart nonconforming finite element method for the Stokes problem, Comput. Methods Appl. Math., 14 (2014), No. 1, 35–54.10.1515/cmam-2013-0021Search in Google Scholar

[9] M. Costabel and A. McIntosh, On Bogovskiĭ and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains, Mathematische Zeitschrift, 265 (2010), No. 2, 297–320.10.1007/s00209-009-0517-8Search in Google Scholar

[10] L. Demkowicz, P. Monk, L. Vardapetyan, and W. Rachowicz, De Rham diagram for hp finite element spaces, Comput. Math. Appl., 39 (2000), No. 7, 29–38.10.1016/S0898-1221(00)00062-6Search in Google Scholar

[11] P. Destuynder and B. Métivet, Explicit error bounds in a conforming finite element method, Math. Comput., 68 (1999), 1379–1396.10.1090/S0025-5718-99-01093-5Search in Google Scholar

[12] A. Ern and M. Vohralík, Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations, SIAM J. Numer. Anal., 53 (2015), No. 2, 1058–1081.10.1137/130950100Search in Google Scholar

[13] R. Falk and M. Neilan, Stokes complexes and the construction of stable finite elements with pointwise mass conservation, SIAM J. Numer. Anal., 51 (2013), No. 2, 1308–1326.10.1137/120888132Search in Google Scholar

[14] N. R. Gauger, A. Linke, and P. W. Schroeder, On high-order pressure-robust space discretisations, their advantages for incompressible high Reynolds number generalised Beltrami flows and beyond, SMAI J. Comput. Math., 5 (2019), 89–129.10.5802/smai-jcm.44Search in Google Scholar

[15] J. Gedicke, S. Geevers, I. Perugia, and J. Schöberl, A polynomial-degree-robust a posteriori error estimator for Nédélec discretizations of magnetostatic problems, SIAM J. Numer. Anal., 59 (2021), No. 4, 2237–2253.10.1137/20M1333365Search in Google Scholar

[16] V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, Springer Series in Computational Mathematics, Vol. 5, Springer-Verlag, Berlin, 1986.10.1007/978-3-642-61623-5Search in Google Scholar

[17] J. Gopalakrishnan, P. L. Lederer, and J. Schöberl, A mass conserving mixed stress formulation for Stokes flow with weakly imposed stress symmetry, SIAM J. Numer. Anal., 58 (2020), No. 1, 706–732.10.1137/19M1248960Search in Google Scholar

[18] J. Gopalakrishnan, P. L. Lederer, and J. Schöberl, A mass conserving mixed stress formulation for the Stokes equations, IMA J. Numer. Anal., 40 (2020), No. 3, 1838–1874.10.1093/imanum/drz022Search in Google Scholar

[19] J. Guzmán and M. Neilan, Conforming and divergence-free Stokes elements on general triangular meshes, Math. Comp., 83 (2014), No. 285, 15–36.10.1090/S0025-5718-2013-02753-6Search in Google Scholar

[20] A. Hannukainen, R. Stenberg, and M. Vohralík, A unified framework for a posteriori error estimation for the Stokes problem, Numer. Math., 122 (2012), No. 4, 725–769.10.1007/s00211-012-0472-xSearch in Google Scholar

[21] V. John, A. Linke, C. Merdon, M. Neilan, and L. Rebholz, On the divergence constraint in mixed finite element methods for incompressible flows, SIAM Review, 59 (2017), No. 3, 492–544.10.1137/15M1047696Search in Google Scholar

[22] G. Kanschat and N. Sharma, Divergence-conforming discontinuous Galerkin methods and C0 interior penalty methods, SIAM J. Numer. Anal., 52 (2014), No. 4, 1822–1842.10.1137/120902975Search in Google Scholar

[23] C. Kreuzer, R. Verfürth, and P. Zanotti, Quasi-optimal and pressure robust discretizations of the Stokes equations by moment- and divergence-preserving operators, Comput. Meth. Appl. Math., 21 (2021), No. 2, 423–443.10.1515/cmam-2020-0023Search in Google Scholar

[24] P. L. Lederer, A Mass Conserving Mixed Stress Formulation for Incompressible Flows, Ph.D. thesis, Technical University of Vienna, 2019.Search in Google Scholar

[25] P. L. Lederer, C. Lehrenfeld, and J. Schöberl, Hybrid discontinuous Galerkin methods with relaxed H(div)-conformity for incompressible flows. Part I, SIAM J. Numer. Anal., 56 (2018), No. 4, 2070–2094.10.1137/17M1138078Search in Google Scholar

[26] P. L. Lederer, A. Linke, C. Merdon, and J. Schöberl, Divergence-free reconstruction operators for pressure-robust Stokes discretizations with continuous pressure finite elements, SIAM J. Numer. Anal., 55 (2017), No. 3, 1291–1314.10.1137/16M1089964Search in Google Scholar

[27] P. L. Lederer, C. Merdon, and J. Schöberl, Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods, Numerische Mathematik, 142 (2019), No. 3, 713–748.10.1007/s00211-019-01049-3Search in Google Scholar

[28] A. Linke, On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime, Comput. Methods Appl. Mech. Engrg., 268 (2014), 782–800.10.1016/j.cma.2013.10.011Search in Google Scholar

[29] A. Linke, G. Matthies, and L. Tobiska, Robust arbitrary order mixed finite element methods for the incompressible Stokes equations with pressure independent velocity errors, ESAIM: M2AN, 50 (2016), No. 1, 289–309.10.1051/m2an/2015044Search in Google Scholar

[30] A. Linke and C. Merdon, Guaranteed energy error estimators for a modified robust Crouzeix–Raviart Stokes element, J. Sci. Comput., 64 (2015), No. 2, 541–558.10.1007/s10915-014-9943-9Search in Google Scholar

[31] A. Linke and C. Merdon, Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier–Stokes equations, Comput. Methods Appl. Mech. Engrg., 311 (2016), 304–326.10.1016/j.cma.2016.08.018Search in Google Scholar

[32] A. Linke, C. Merdon, and M. Neilan, Pressure-robustness in quasi-optimal a priori estimates for the Stokes problem, Electron. Trans. Numer. Anal., 52 (2020), 281–294.10.1553/etna_vol52s281Search in Google Scholar

[33] R. Luce and B. Wohlmuth, A local a posteriori error estimator based on equilibrated fluxes, SIAM J. Numer. Anal., 42 (2004), 1394–1414.10.1137/S0036142903433790Search in Google Scholar

[34] J. M. Melenk and C. Rojik, On commuting p-version projection-based interpolation on tetrahedra, Math. Comp., 89 (2019), No. 321, 45–87.10.1090/mcom/3454Search in Google Scholar

[35] C. Merdon, Aspects of Guaranteed Error Control in Computations for Partial Differential Equations, Ph.D. thesis, Humboldt-Universität zu Berlin, 2013.Search in Google Scholar

[36] P. Monk, Finite Element Methods for Maxwell’s Equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003.10.1093/acprof:oso/9780198508885.001.0001Search in Google Scholar

[37] P. Neittaanmäki and S. I. Repin, A posteriori error majorants for approximations of the evolutionary Stokes problem, J. Numer. Math., 18 (2010), No. 2, 119 – 134.10.1515/jnum.2010.005Search in Google Scholar

[38] W. Prager and J. L. Synge, Approximations in elasticity based on the concept of function space, Quart. Appl. Math., 5 (1947), 241–269.10.1090/qam/25902Search in Google Scholar

[39] S. I. Repin, A Posteriori Estimates for Partial Differential Equations, De Gruyter, Berlin–Boston, 2008.10.1515/9783110203042Search in Google Scholar

[40] J. Schöberl, NETGEN: An advancing front 2D/3D-mesh generator based on abstract rules, Comput. Visual. Sci., 1 (1997), No. 1, 41–52.10.1007/s007910050004Search in Google Scholar

[41] J. Schöberl, C++11 Implementation of Finite Elements in NGSolve, Report No. 30/2014, Institute for Analysis and Scientific Computing, Vienna University of Technology, 2014.Search in Google Scholar

[42] L. R. Scott and M. Vogelius, Conforming finite element methods for incompressible and nearly incompressible continua, Lectures Appl. Math., 22 (1985), No. 2, pp. 221–244.Search in Google Scholar

[43] G. Stoyan, Towards discrete Velte decompositions and narrow bounds for inf-sup constants, Comput. Math. Appl., 38 (1999), No. 7, 243–261.10.1016/S0898-1221(99)00254-0Search in Google Scholar

[44] R. Verfürth, A posteriori error estimators for the Stokes equations, Numer. Math., 55 (1989), No. 3, 309–325.10.1007/BF01390056Search in Google Scholar

[45] J. Wang, Y. Wang, and X. Ye, Unified a posteriori error estimator for finite element methods for the Stokes equations, Int. J. Numer. Anal. Model., 10 (2013), No. 3, 551–570.10.1002/mma.2871Search in Google Scholar

[46] L. Zhao, E. J. Park, and E. Chung, A Pressure Robust Staggered Discontinuous Galerkin Method for the Stokes Equations Computers & Math. Appl., 128 (2022), 163–179.10.1016/j.camwa.2022.10.019Search in Google Scholar

Received: 2021-06-21
Revised: 2021-09-20
Accepted: 2021-09-28
Published Online: 2022-12-09
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/jnma-2021-0078/html
Scroll to top button