Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 5, 2022

Numerical analysis for a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport

  • Harald Garcke and Dennis Trautwein EMAIL logo
An erratum for this article can be found here: https://doi.org/10.1515/jnma-2024-0035

Abstract

A diffuse interface model for tumour growth in the presence of a nutrient consumed by the tumour is considered. The system of equations consists of a Cahn–Hilliard equation with source terms for the tumour cells and a reaction–diffusion equation for the nutrient. We introduce a fully-discrete finite element approximation of the model and prove stability bounds for the discrete scheme. Moreover, we show that discrete solutions exist and depend continuously on the initial and boundary data. We then pass to the limit in the discretization parameters and prove convergence to a global-in-time weak solution to the model. Under additional assumptions, this weak solution is unique. Finally, we present some numerical results including numerical error investigation in one spatial dimension and some long time simulations in two and three spatial dimensions.

JEL Classification: 65M12; 65M22; 35Q92; 92B05

References

[1] H. W. Alt, Linear Functional Analysis: An Application-Oriented Introduction, Springer, 2016.10.1007/978-1-4471-7280-2_1Search in Google Scholar

[2] D. Ambrosi and L. Preziosi, On the closure of mass balance models for tumor growth, Math. Models Methods Appl. Sci., 12 (2002), No. 05, 737–754.10.1142/S0218202502001878Search in Google Scholar

[3] G. Arumugam and J. Tyagi, Keller–Segel chemotaxis models: a review, Acta Appl. Math., 171 (2021), No. 1, 1–82.10.1007/s10440-020-00374-2Search in Google Scholar

[4] J. W. Barrett and J. F. Blowey, Finite element approximation of the Cahn–Hilliard equation with concentration dependent mobility, Math. Comp., 68 (1999), No. 226, 487–517.10.1090/S0025-5718-99-01015-7Search in Google Scholar

[5] J. W. Barrett, J. F. Blowey, and H. Garcke, Finite element approximation of the Cahn–Hilliard equation with degenerate mobility, SIAM J. Num. Anal., 37 (1999), No. 1, 286–318.10.1137/S0036142997331669Search in Google Scholar

[6] J. W. Barrett and S. Boyaval, Finite element approximation of the FENE-P model, IMA J. Numer. Anal., 38 (2018), No. 4, 1599–1660.10.1093/imanum/drx061Search in Google Scholar

[7] J. W. Barrett, S. Langdon, and R. Nürnberg, Finite element approximation of a sixth order nonlinear degenerate parabolic equation, Numer. Math., 96 (2004), No. 3, 401–434.10.1007/s00211-003-0479-4Search in Google Scholar

[8] J. W. Barrett, R. Nürnberg, and V. Styles, Finite element approximation of a phase field model for void electromigration, SIAM J. Num. Anal., 42 (2004), No. 2, 738–772.10.1137/S0036142902413421Search in Google Scholar

[9] S. Bartels, Numerical Approximation of Partial Differential Equations, Texts in Applied Mathematics, Vol. 64, Springer, Cham, 2016.10.1007/978-3-319-32354-1Search in Google Scholar

[10] N. Bellomo, N. K. Li, and P. K. Maini, On the foundations of cancer modelling: selected topics, speculations, and perspectives, Math. Models Methods Appl. Sci., 18 (2008), No. 04, 593–646.10.1142/S0218202508002796Search in Google Scholar

[11] J. F. Blowey and C. M. Elliott, The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy Part II: Numerical analysis, European J. Appl. Math., 3 (1992), No. 2, 147–179.10.1017/S0956792500000759Search in Google Scholar

[12] H. M. Byrne and M. A. J. Chaplain, Free boundary value problems associated with the growth and development of multicellular spheroids, European J. Appl. Math., 8 (1997), No. 6, 639–658.10.1017/S0956792597003264Search in Google Scholar

[13] A. Chertock and A. Kurganov, A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models, Numer. Math., 111 (2008), No. 2, 169–205.10.1007/s00211-008-0188-0Search in Google Scholar

[14] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, Society for Industrial and Applied Mathematics, 2002.10.1137/1.9780898719208Search in Google Scholar

[15] P. Clément, Approximation by finite element functions using local regularization, ESAIM: Math. Model. Numer. Anal., 9 (1975), No. R2, 77–84.10.1051/m2an/197509R200771Search in Google Scholar

[16] P. Colli, G. Gilardi, E. Rocca, and J. Sprekels, Optimal distributed control of a diffuse interface model of tumor growth, Nonlinearity, 30 (2017), No. 6, 2518–2546.10.1088/1361-6544/aa6e5fSearch in Google Scholar

[17] V. Cristini, X. Li, J. S. Lowengrub, and S. M. Wise, Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching, J. Math. Biol., 58 (2009), No. 4, 723–763.10.1007/s00285-008-0215-xSearch in Google Scholar PubMed PubMed Central

[18] V. Cristini and J. Lowengrub, Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach, Cambridge University Press, 2010.10.1017/CBO9780511781452Search in Google Scholar

[19] W. Dahmen and A. Reusken, Numerik für Ingenieure und Naturwissenschaftler, 2nd ed, Springer eBook Collection, Berlin–Heidelberg, 2008.Search in Google Scholar

[20] M. Dai, E. Feireisl, E. Rocca, G. Schimperna, and M. Schonbek, Analysis of a diffuse interface model of multispecies tumor growth, Nonlinearity, 30 (2017), No. 4, 1639–1658.10.1088/1361-6544/aa6063Search in Google Scholar

[21] Q. Du and X. Feng, Chapter 5: The phase field method for geometric moving interfaces and their numerical approximations, In: Geometric Partial Differential Equations, Part I (Eds. A. Bonito and R. H. Nochetto), Handbook of Numerical Analysis, Vol. 21, Elsevier, 2020, pp. 425–508.10.1016/bs.hna.2019.05.001Search in Google Scholar

[22] M. Ebenbeck, H. Garcke, and R. Nürnberg, Cahn–Hilliard–Brinkman systems for tumour growth, Discrete Contin. Dyn. Syst. Ser. S 14 (2021), No. 11, 3989–4033.10.3934/dcdss.2021034Search in Google Scholar

[23] C. M. Elliott, The Cahn–Hilliard model for the kinetics of phase separation, In: Mathematical Models for Phase Change Problems, Birkhäuser Basel, Basel, 1989, pp. 35–73.10.1007/978-3-0348-9148-6_3Search in Google Scholar

[24] C. M. Elliott, D. A. French, and F. A. Milner, A second order splitting method for the Cahn–Hilliard equation, Numer. Math., 54 (1989), No. 2, 575–590.10.1007/BF01396363Search in Google Scholar

[25] Y. Epshteyn and A. Izmirlioglu, Fully discrete analysis of a discontinuous finite element method for the Keller–Segel chemotaxis model, J. Sci. Comput., 40 (2009), No. 1, 211–256.10.1007/s10915-009-9281-5Search in Google Scholar

[26] L. C. Evans, Partial Differential Equations, 2nd ed., American Mathematical Society, Providence, R.I., 2010.Search in Google Scholar

[27] J. Eyles, J. R. King, and V. Styles, A tractable mathematical model for tissue growth, Interfaces and Free Boundaries, 21 (2019), No. 4, 463–493.10.4171/ifb/428Search in Google Scholar

[28] F. Filbet, A finite volume scheme for the Patlak–Keller–Segel chemotaxis model, Numer. Math., 104 (2006), 457–488.10.1007/s00211-006-0024-3Search in Google Scholar

[29] H. B. Frieboes, J. S. Lowengrub, S. Wise, X. Zheng, P. Macklin, E. L. Bearer, and V. Cristini, Computer simulation of glioma growth and morphology, NeuroImage, 37 (2007), S59–S70.10.1016/j.neuroimage.2007.03.008Search in Google Scholar PubMed PubMed Central

[30] A. Friedman, Mathematical analysis and challenges arising from models of tumor growth, Math. Models Methods Appl. Sci., 17 (2007), 1751–1772.10.1142/S0218202507002467Search in Google Scholar

[31] S. Frigeri, K. F. Lam, and E. Rocca, On a diffuse interface model for tumour growth with non-local interactions and degenerate mobilities, In: Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs, Springer, 2017, pp. 217–254.10.1007/978-3-319-64489-9_9Search in Google Scholar

[32] H. Garcke and K. F. Lam, Analysis of a Cahn–Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis, Discrete Contin. Dyn. Syst. Ser. A, 37 (2017), No. 8, 4277–4308.10.3934/dcds.2017183Search in Google Scholar

[33] H. Garcke and K. F. Lam, Well-posedness of a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport, European J. Appl. Math., 28 (2017), No. 2, 284–316.10.1017/S0956792516000292Search in Google Scholar

[34] H. Garcke, K. F. Lam, R. Nürnberg, and E. Sitka, A multiphase Cahn–Hilliard–Darcy model for tumour growth with necrosis, Math. Models Methods Appl. Sci., 28 (2018), No. 03, 525–577.10.1142/S0218202518500148Search in Google Scholar

[35] H. Garcke, K. F. Lam, and E. Rocca, Optimal control of treatment time in a diffuse interface model of tumor growth, Appl. Math. Optim., 78 (2018), No. 3, 495–544.10.1007/s00245-017-9414-4Search in Google Scholar

[36] H. Garcke, K. F. Lam, and A. Signori, On a phase field model of Cahn–Hilliard type for tumour growth with mechanical effects, Nonlin. Anal. Real World Appl., 57 (2021), 103192.10.1016/j.nonrwa.2020.103192Search in Google Scholar

[37] H. Garcke, K. F. Lam, E. Sitka, and V. Styles, A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport, Math. Models Methods Appl. Sci., 26 (2016), No. 06, 1095–1148.10.1142/S0218202516500263Search in Google Scholar

[38] H. P. Greenspan, On the growth and stability of cell cultures and solid tumors, J. Theoret. Biol., 56 (1976), No. 1, 229–242.10.1016/S0022-5193(76)80054-9Search in Google Scholar PubMed

[39] G. Grün, On the convergence of entropy consistent schemes for lubrication type equations in multiple space dimensions, Math. Comp., 72 (2003), 1251–1279.10.1090/S0025-5718-03-01492-3Search in Google Scholar

[40] G. Grün, On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general mass densities, SIAM J. Num. Anal., 51 (2013), No. 6, 3036–3061.10.1137/130908208Search in Google Scholar

[41] A. Gurusamy and K. Balachandran, Finite element method for solving Keller–Segel chemotaxis system with cross-diffusion, Int. J. Dyn. Control, 6 (2018), No. 2, 539–549.10.1007/s40435-017-0335-5Search in Google Scholar

[42] A. Hawkins-Daarud, K. G. van der Zee, and J. T. Oden, Numerical simulation of a thermodynamically consistent four-species tumor growth model, Int. J. Numer. Methods Biomed. Engrg., 28 (2012), No. 1, 3–24.10.1002/cnm.1467Search in Google Scholar PubMed

[43] T. Hillen and K. J. Painter, A user’s guide to {PDE} models for chemotaxis, J. Math. Biol., 58 (2009), No. 1-2, 183–217.10.1007/s00285-008-0201-3Search in Google Scholar PubMed

[44] P. Krejčí, E. Rocca, and J. Sprekels, Analysis of a tumor model as a multicomponent deformable porous medium, Interfaces Free Bound., 24 (2022), No. 2, 235–262.10.4171/ifb/472Search in Google Scholar

[45] A. Logg, K. A. Mardal, G. N. Wells (Eds.), Automated Solution of Differential Equations by the Finite Element Method, The FEniCS book, Vol. 84. Springer Science & Business Media, 2012.10.1007/978-3-642-23099-8Search in Google Scholar

[46] A. Marrocco, Numerical simulation of chemotactic bacteria aggregation via mixed finite elements, M2AN Math. Model. Numer. Anal., 37 (2003), No. 4, 617–630.10.1051/m2an:2003048Search in Google Scholar

[47] J. T. Oden, A. Hawkins, and S. Prudhomme, General diffuse-interface theories and an approach to predictive tumor growth modeling, Math. Models Methods Appl. Sci., 20 (2010), No. 03, 477–517.10.1142/S0218202510004313Search in Google Scholar

[48] T. Roose, S. J. Chapman, and P. K. Maini, Mathematical models of avascular tumor growth, SIAM Review, 49 (2007), No. 2, 179–208.10.1137/S0036144504446291Search in Google Scholar

[49] E. Roussos, J. Condeelis, and A. Patsialou, Chemotaxis in cancer, Nat. Rev. Cancer, 11 (2011), 573–587.10.1038/nrc3078Search in Google Scholar PubMed PubMed Central

[50] N. Saito, Conservative upwind finite-element method for a simplified Keller–Segel system modelling chemotaxis, IMA J. Numer. Anal., 27 (2007), No. 2, 332–365.10.1093/imanum/drl018Search in Google Scholar

[51] N. Saito, Error analysis of a conservative finite-element approximation for the Keller–Segel system of chemotaxis, Commun. Pure Appl. Anal., 11 (2012), No. 1, 339–364.10.3934/cpaa.2012.11.339Search in Google Scholar

[52] J. Simon, Compact sets in the space Lp(0, T; B), Annali di Matematica Pura ed Applicata, 146 (1986), 65–96.10.1007/BF01762360Search in Google Scholar

[53] R. Strehl, A. Sokolov, D. Kuzmin, D. Horstmann, and S. Turek, A positivity-preserving finite element method for chemotaxis problems in 3D, J. Comput. Appl. Math., 239 (2013), 290–303.10.1016/j.cam.2012.09.041Search in Google Scholar

[54] D. Trautwein, A Finite Element Method for a Cahn–Hilliard System Modelling Tumour Growth, Master’s thesis, University of Regensburg, 2020.Search in Google Scholar

[55] S. M. Wise, J. S. Lowengrub, H. B. Frieboes, and V. Cristini, Three-dimensional multispecies nonlinear tumor growth, I: Model and numerical method, J. Theor. Biol., 253 (2008), No. 3, 524–543.10.1016/j.jtbi.2008.03.027Search in Google Scholar PubMed PubMed Central

[56] J. Wloka, Partial Differential Equations, Cambridge University Press, 1987.10.1017/CBO9781139171755Search in Google Scholar

[57] J. Zhang, J. Zhu, and R. Zhang, Characteristic splitting mixed finite element analysis of Keller–Segel chemotaxis models, Appl. Math. Comput., 278 (2016), 33–44.10.1016/j.amc.2016.01.021Search in Google Scholar

Received: 2021-08-03
Revised: 2022-03-24
Accepted: 2022-04-06
Published Online: 2022-05-05
Published in Print: 2022-12-16

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/jnma-2021-0094/html
Scroll to top button