Skip to main content
Log in

Minimum Spanning Paths and Hausdorff Distance in Finite Ultrametric Spaces

  • Research Articles
  • Published:
p-Adic Numbers, Ultrametric Analysis and Applications Aims and scope Submit manuscript

Abstract

It is shown that a minimum weight spanning tree of a finite ultrametric space can be always found in the form of path. As a canonical representing tree such path uniquely defines the whole space and, moreover, it has much more simple structure. Thus, minimum spanning paths are a convenient tool for studying finite ultrametric spaces. To demonstrate this we use them for characterization of some known classes of ultrametric spaces. The explicit formula for Hausdorff distance in finite ultrametric spaces is also found. Moreover, the possibility of using minimum spanning paths for finding this distance is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. A. V. Arutyunov, S. A. Vartapetov and S. E. Zhukovskiy, “Some properties and applications of the Hausdorff distance,” J. Optim. Theory Appl. 171 (2), 527–535 (2016).

    Article  MathSciNet  Google Scholar 

  2. J. A. Bondy and U. S. R. Murty, Graph Theory, Graduate Texts in Mathematics 244 (Springer, New York, 2008).

    Book  Google Scholar 

  3. D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Graduate Studies in Mathematics 33 (Amer. Math. Soc., Providence, RI, 2001).

    MATH  Google Scholar 

  4. H.-F. Chen and M.-S. Chang, “An efficient exact algorithm for the minimum ultrametric tree problem,” in: Algorithms and Computation, Lecture Notes in Comput. Sci. 3341, 282–293 (Springer, Berlin, 2004).

    Chapter  Google Scholar 

  5. T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms (MIT Press, Cambridge, MA, 2009).

    MATH  Google Scholar 

  6. J. Dejun, H. Fazhi, H. Soonhung, et al., “An efficient approach to directly compute the exact Hausdorff distance for 3d point sets,” Integr. Comp.-Aided Eng. 24(3), 261–277 (2017).

    Article  Google Scholar 

  7. E. D. Demaine, G. M. Landau and O. Weimann, “On Cartesian trees and range minimum queries,” in: Automata, Languages and Programming. Part I, Lecture Notes in Comput. Sci. 5555, 341–353 (Springer, Berlin, 2009).

    Chapter  Google Scholar 

  8. E. Diday, “Crossings, orders and ultrametrics: Application to visualization of consensus for comparing classifications,” in: COMPSTAT 1982 5th Symposium held at Toulouse 1982, Part I: Proc. Comput. Stat. 186–191 (Physica, Heidelberg, 1982).

    Chapter  Google Scholar 

  9. D. Dordovskyi, O. Dovgoshey and E. Petrov, “Diameter and diametrical pairs of points in ultrametric spaces,” p-Adic Num. Ultrametr. Anal. Appl. 3 (4), 253–262 (2011).

    Article  MathSciNet  Google Scholar 

  10. O. Dovgoshey, “Finite ultrametric balls,” p-Adic Num. Ultrametr. Anal. Appl. 11 (3), 177–191 (2019).

    Article  MathSciNet  Google Scholar 

  11. O. Dovgoshey and E. Petrov, “From isomorphic rooted trees to isometric ultrametric spaces,” p-Adic Num. Ultrametr. Anal. Appl. 10 (4), 287–298 (2018).

    Article  MathSciNet  Google Scholar 

  12. O. Dovgoshey and E. Petrov, “On some extremal properties of finite ultrametric spaces,” p-Adic Num. Ultrametr. Anal. Appl. 12 (1), 1–11 (2020).

    Article  MathSciNet  Google Scholar 

  13. O. Dovgoshey, E. Petrov and H.-M. Teichert, “On spaces extremal for the Gomory-Hu inequality,” p-Adic Num. Ultrametr. Anal. Appl. 7 (2), 133–142 (2015).

    Article  MathSciNet  Google Scholar 

  14. O. Dovgoshey, E. Petrov and H.-M. Teichert, “How rigid the finite ultrametric spaces can be?,” Fix. Point Theo. Appl. 19(2), 1083–1102 (2017).

    Article  MathSciNet  Google Scholar 

  15. M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in improved network optimization algorithms,” J. Assoc. Comput. Mach. 34 (3), 596–615 (1987).

    Article  MathSciNet  Google Scholar 

  16. R. E. Gomory and T. C. Hu, “Multi-terminal network flows,” SIAM 9 (4), 551–570 (1961).

    MathSciNet  MATH  Google Scholar 

  17. M. Gromov, Metric Structures for Riemannian and non-Riemannian Spaces, Modern Birkhäuser Classics (Birkhäuser, Boston, 2007).

    MATH  Google Scholar 

  18. V. Gurvich and M. Vyalyi, “Characterizing (quasi-)ultrametric finite spaces in terms of (directed) graphs,” Discrete Appl. Math. 160 (12), 1742–1756 (2012).

    Article  MathSciNet  Google Scholar 

  19. V. Gurvich and M. Vyalyi, “Ultrametrics, trees, flows and bottleneck arcs,” Mat. Pros., Ser. 3 16, 75–88 (2012), [In Russian].

    Google Scholar 

  20. B. Hughes, “Trees and ultrametric spaces: a categorical equivalence,” Adv. Math. 189 (1), 148–191 (2004).

    Article  MathSciNet  Google Scholar 

  21. B. Hughes, “Trees, ultrametrics, and noncommutative geometry,” Pure Appl. Math. Q. 8 (1), 221–312 (2012).

    Article  MathSciNet  Google Scholar 

  22. P. Indyk, “Sublinear time algorithms for metric space problems,” in: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, 428–432 (ACM, New York, 1999).

    Chapter  Google Scholar 

  23. D. R. Karger, P. N. Klein and R. E. Tarjan, “A randomized linear-time algorithm to find minimum spanning trees,” J. Assoc. Comput. Mach. 42 (2), 321–328 (1995).

    Article  MathSciNet  Google Scholar 

  24. J. B. Kruskal, Jr., “On the shortest spanning subtree of a graph and the traveling salesman problem,” Proc. Amer. Math. Soc. 7, 48–50 (1956).

    Article  MathSciNet  Google Scholar 

  25. K. S. Kumar, T. Manigandan, D. Chitra and L. Murali, “Object recognition using hausdorff distance for multimedia applications,” Multimed. Tools Appl. 79, 4099–4114 (2020).

    Article  Google Scholar 

  26. A. Lambert and G. U. Bravo, “The comb representation of compact ultrametric spaces,” p-Adic Num. Ultrametr. Anal. Appl. 9 (1), 22–38 (2017).

    Article  MathSciNet  Google Scholar 

  27. A. J. Lemin, “The category of ultrametric spaces is isomorphic to the category of complete, atomic, tree-like, and real graduated lattices LAT*,” Alg. Univers. 50 (1), 35–49 (2003).

    Article  MathSciNet  Google Scholar 

  28. E. Petrov and A. Dovgoshey, “On the Gomory-Hu inequality,” J. Math. Sci. 198 (4), 392–411 (2014); translation from Ukr. Mat. Visn. 10 (4), 469–496 (2013).

    Article  MathSciNet  Google Scholar 

  29. E. A. Petrov, “Ball-preserving mappings of finite ulrametric spaces,” Tr. Inst. Prikl. Mat. Mekh. 26, 150–158 (2013) [In Russian].

    Google Scholar 

  30. S. Pettie and V. Ramachandran, “An optimal minimum spanning tree algorithm,” J. ACM 49 (1), 16–34 (2002).

    Article  MathSciNet  Google Scholar 

  31. D. Qiu, “Geometry of non-Archimedian Gromov-Hausdorff distance,” p-Adic Num. Ultrametr. Anal. Appl. 1 (4), 317–337 (2009).

    Article  Google Scholar 

  32. D. Qiu, “The structures of Hausdorff metric in non-Archimedean spaces,” p-Adic Num. Ultrametr. Anal. Appl. 6 (1), 33–53 (2014).

    Article  MathSciNet  Google Scholar 

  33. J. Schäfer, “A note on ultrametric spaces, minimum spanning trees and the topological distance algorithm,” Information 11 (9), 1–9 (2020).

    Article  Google Scholar 

  34. C. Semple and M. Steel, Phylogenetics, Oxford Lecture Series in Mathematics and its Applications 24 (Oxford Univ. Press, New York, 2003).

    MATH  Google Scholar 

  35. B. Y. Wu, K.-M. Chao and C. Y. Tang, “Approximation and exact algorithms for constructing minimum ultrametric trees from distance matrices,” J. Comb. Optim. 3 (2-3), 199–211 (1999).

    Article  MathSciNet  Google Scholar 

Download references

Funding

The research was partially supported by the National Academy of Sciences of Ukraine, Project 0117U002165 “Development of mathematical models, numerically analytical methods and algorithms for solving modern medico-biological problems”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniy Petrov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, E. Minimum Spanning Paths and Hausdorff Distance in Finite Ultrametric Spaces. P-Adic Num Ultrametr Anal Appl 14, 145–156 (2022). https://doi.org/10.1134/S2070046622020054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070046622020054

Keywords

Navigation