Skip to main content
Log in

Application of numerical differentiation to conversion of linear viscoelastic functions

  • Original Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

We propose a new method to calculate relaxation time spectrum (RTS) and enable conversions between viscoelastic functions. The exact relations between the viscoelastic functions are simply derived using complex analysis of the higher-order derivative of those functions. Hence, a stable numerical differential method is demanded to obtain genuine solutions without the interference of errors due to numerical analysis. In this study, we adopted the double-logarithmic B-spline and its recursive relation to obtain higher-order derivative. The proposed algorithm is tested and compared with previous methods, using simulated and experimental data. When creep data obtained through experiments are converted to dynamic moduli, significant improvement in the terminal behavior is observed compared to the previous method because the Runge phenomenon is significantly reduced using a low-order polynomial. Moreover, the spectra obtained for experimental data are almost identical to those obtained through a previously verified algorithm. Thus, our results agree well with both simulated data and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cho KS, Kwon MK, Lee J, Kim S (2017) Mathematical analysis on linear viscoelastic identification. Korea Aust Rheol J 29:249–268

    Article  Google Scholar 

  2. Gramespacher H, Meissner J (1992) Interfacial tension between polymer melts measured by shear oscillations of their blends. J Rheol 36:1127–1141

    Article  CAS  Google Scholar 

  3. Shaayegan V, Wood-Adams P, Demarquette NR (2012) Linear viscoelasticity of immiscible blends: the application of creep. J Rheol 56:1039–1056

    Article  CAS  Google Scholar 

  4. Nofar M, Maani A, Sojoudi H, Heuzey MC, Carreau PJ (2015) Interfacial and rheological properties of pla/pbat and pla/pbsa blends and their morphological stability under shear flow. J Rheol 59:317–333

    Article  CAS  Google Scholar 

  5. Ankiewicz S, Orbey N, Watanabe H, Lentzakis H, Dealy J (2016) On the use of continuous relaxation spectra to characterize model polymers. J Rheol 60:1115–1120

    Article  CAS  Google Scholar 

  6. Kwon MK, Cho KS (2016) Analysis of the palierne model by relaxation time spectrum. Korea-Aust Rheol J 28:23–31

    Article  Google Scholar 

  7. Honerkamp J, Weese J (1993) A nonlinear regularization method for the calculation of relaxation spectra. Rheol Acta 32:65–73

    Article  CAS  Google Scholar 

  8. Roths T, Maier D, Friedrich C, Marth M, Honerkamp J (2000) Determination of the relaxation time spectrum from dynamic moduli using an edge preserving regularization method. Rheol Acta 39:163–173

    Article  CAS  Google Scholar 

  9. Stadler FJ, Bailly C (2009) A new method for the calculation of continuous relaxation spectra from dynamic-mechanical data. Rheol Acta 48:33–49

    Article  CAS  Google Scholar 

  10. Stadler FJ, Van Ruymbeke E (2010) An improved method to obtain direct rheological evidence of monomer density reequilibration for entangled polymer melts. Macromolecules 43:9205–9209

    Article  CAS  Google Scholar 

  11. Cho KS, Park GW, Soo Cho K, Woo Park G (2013) Fixed-point iteration for relaxation spectrum from dynamic mechanical data. J Rheol 57:647–678

    Article  CAS  Google Scholar 

  12. McDougall I, Orbey N, Dealy JM (2014) Inferring meaningful relaxation spectra from experimental data. J Rheol 58:779–797

    Article  CAS  Google Scholar 

  13. Bae J-E, Cho KS (2015) Logarithmic method for continuous relaxation spectrum and comparison with previous methods. J Rheol 59:1081–1112

    Article  CAS  Google Scholar 

  14. Shanbhag S (2020) Relaxation spectra using nonlinear Tikhonov regularization with a Bayesian criterion. Rheol Acta 59:509–520

    Article  CAS  Google Scholar 

  15. Eckstein A, Suhm J, Friedrich C, Maier R-D, Sassmannshausen J, Bochmann M, Mülhaupt R (1998) Determination of plateau moduli and entanglement molecular weights of isotactic, syndiotactic, and atactic polypropylenes synthesized with metallocene catalysts. Macromolecules 31:1335–1340

    Article  CAS  Google Scholar 

  16. He C, Wood-Adams P, Dealy JM (2004) Broad frequency range characterization of molten polymers. J Rheol 48:711–724

    Article  CAS  Google Scholar 

  17. Schwarzl F, Staverman AJ (1953) Higher approximation methods for the relaxation spectrum from static and dynamic measurements of visco-elastic materials. Appl Sci Res 4:127–141

    Article  Google Scholar 

  18. Tschoegl NW (1971) A general method for the determination of approximations to the spectral distributions from the dynamic response functions. Rheol Acta 10:582–594

    Article  CAS  Google Scholar 

  19. Friedrich C (1991) A delta-function method for the n-th approximation of relaxation or retardation time spectrum from dynamic data. Rheol Acta 30:7–13

    Article  CAS  Google Scholar 

  20. Anderssen RS, Davies AR, de Hoog FR, Loy RJ (2015) Derivative based algorithms for continuous relaxation spectrum recovery. J Non Newton Fluid Mech 222:132–140

    Article  CAS  Google Scholar 

  21. Gureyev TE, Nesterets YI, Stevenson AW, Wilkins SW (2003) A method for local deconvolution. Appl Opt 42:6488

    Article  Google Scholar 

  22. Lee SH, Bae J-E, Cho KS (2017) Determination of continuous relaxation spectrum based on the fuoss-kirkwood relation and logarithmic orthogonal power-series approximation. Korea Aust Rheol J 29:115–127

    Article  Google Scholar 

  23. Evans RML, Tassieri M, Auhl D, Waigh TA (2009) Direct conversion of rheological compliance measurements into storage and loss moduli. Phys Rev E 80:012501

    Article  CAS  Google Scholar 

  24. Tassieri M, Evans RML, Warren RL, Bailey NJ, Cooper JM (2012) Microrheology with optical tweezers: data analysis. New J Phys 14:115032

    Article  Google Scholar 

  25. Tassieri M, Laurati M, Curtis DJ, Auhl DW, Coppola S, Scalfati A, Hawkins K, Williams PR, Cooper JM (2016) I-rheo: measuring the materials’ linear viscoelastic properties ‘in a step ’ ! J Rheol 60:649–660

    Article  CAS  Google Scholar 

  26. Tassieri M, Ramírez J, Karayiannis NC, Sukumaran SK, Masubuchi Y (2018) I-rheo gt : transforming from time to frequency domain without artifacts. Macromolecules 51:5055–5068

    Article  CAS  Google Scholar 

  27. Moreno-Guerra JA, Romero-Sánchez IC, Martinez-Borquez A, Tassieri M, Stiakakis E, Laurati M (2019) Model-free rheo-afm probes the viscoelasticity of tunable dna soft colloids. Small 15:1904136

    Article  CAS  Google Scholar 

  28. Kwon MK, Lee SH, Lee SG, Cho KS (2016) Direct conversion of creep data to dynamic moduli. J Rheol 60:1181–1197

    Article  CAS  Google Scholar 

  29. Süli E, Mayers DF (2003) An introduction to numerical analysis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  30. Fuoss RM, Kirkwood JG (1941) Electrical properties of solids. viii. dipole moments in polyvinyl chloride-diphenyl systems. J Am Chem Soc 63:385–394

    Article  CAS  Google Scholar 

  31. Kim M, Bae J-E, Kang N, Cho KS (2015) Extraction of viscoelastic functions from creep data with ringing. J Rheol 59:237–252

    Article  CAS  Google Scholar 

  32. Davies AR, Anderssen RS (1997) Sampling localization in determining the relaxation spectrum. J Non Newton Fluid Mech 73:163–179

    Article  CAS  Google Scholar 

  33. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2002) Numerical recipes in C++: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  34. Schausberger A, Schindlauer G, Janeschitz-Kriegl H (1985) Linear elastico-viscous properties of molten standard polystyrenes. Rheol Acta 24:228–231

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Mid-Career Researcher Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (2019R1I1A2A02063776).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang Soo Cho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Cho, K.S. Application of numerical differentiation to conversion of linear viscoelastic functions. Korea-Aust. Rheol. J. 34, 187–196 (2022). https://doi.org/10.1007/s13367-022-00030-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-022-00030-1

Keywords

Navigation