Skip to main content

Advertisement

Log in

Is the littoral zone taxonomically and functionally more diverse? Investigating the rotifer community of a tropical shallow lake

  • Research paper
  • Published:
Limnology Aims and scope Submit manuscript

Abstract

We investigated the taxonomic and functional diversity of rotifers in the littoral, intermediate, and pelagic zones of a tropical lake. Rotifers were collected at 10 sampling stations located in the three distinct zones. Taxonomic diversity was determined by species richness, abundance, and Shannon–Wiener diversity, while functional diversity was calculated using functional richness (FRic), functional evenness (FEve), and the community-weighted mean of functional traits (CWM). Redundancy analysis (RDA) were applied to ordinate the taxonomic and functional composition between the zones of the lake. The taxonomic diversity, represented by the abundance of organisms, was higher in the ecotone (i.e., intermediate zone). The RDA showed a difference between the three zones, with the occurrence of epiphytic rotifers in the littoral zone and semi-planktonic and planktonic species in the intermediate and pelagic zones. Regarding functional diversity, values of FRic and FEve did not differ between the zones. In contrast, CWM showed a distinct response between the zones of the lake. Illoricate species with raptorial characteristics, virgate trophi, and corona of the Asplanchna-type dominated in the littoral zone. In turn, microphagous rotifers, loricate species with spines, malleate trophi, and corona of the Brachionus/Euchlanis-type occurred in the intermediate and pelagic zones of the lake. The ecotone (intermediate zone) was taxonomically more diverse for the abundance of organisms compared to other two zones of the lake. For functional diversity, the three zones of the lake presented distinct functional traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Coelho and Henry (2021)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson MJ, Legendre P, Shipley B, Laliberté KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth, UK

  • Arcifa MS, Souza BB, Morais-Junior CS, Bruno CGC (2020) Functional groups of rotifers and an exotic species in a tropical shallow lake. Sci Rep 10:14698. https://doi.org/10.1038/s41598-020-71778-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balkić AG (2019) The importance of environmental differences in the structuring of rotifer functional diversity. J Limnol 78(3):284–295. https://doi.org/10.4081/jlimnol.2019.1903

    Article  Google Scholar 

  • Braghin LDSM, Almeida BDA, Amaral DC, Canella TF, Gimenez BCG, Bonecker CC (2018) Effects of dams decrease zooplankton functional β-diversity in river-associated lakes. Freshw Biol 63(7):721–730. https://doi.org/10.1111/fwb.13117

    Article  Google Scholar 

  • Casartelli MR (2019) Dinâmica das comunidades algais (fitoplâncton, epipélon, epifíton) e suas inter-relações em diferentes fases limnológicas em uma lagoa marginal. PhD Thesis, Instituto de Botânica da Secretária de Infraestrutura e Meio Ambiente

  • Coelho PN, Henry R (2021) Functional groups of microcrustaceans along a horizontal gradient in a Neotropical lake colonized by macrophytes. Aquat Sci 83(3):1–13. https://doi.org/10.1007/s00027-020-00759-3

    Article  Google Scholar 

  • Coelho PN, Braghin LSM, Lansac-Tôha FA, Henry R (2019) Occurrence of concavities on the lorica of two species of Testudinella (Rotifera, Monogononta, Testudinellidae). Biota Neotrop 19(2):e20180633. https://doi.org/10.1590/1676-0611-BN-2018-0633

    Article  Google Scholar 

  • Coelho PN, Paes TASV, Maia-Barbosa PM, Santos-Wisniewski MJ (2021) Effects of pollution on dormant-stage banks of cladocerans and rotifers in a large tropical reservoir. Environ Sci Pollut Res 28:30887-30897 https://doi.org/10.1007/s11356-021-12751-x

    Article  CAS  Google Scholar 

  • Collen B, Whitto F, Dyer EE, Baillie JE, Cumberlidge N, Darwall WR, Pollock C, Richman NI, Soulsby AN, Böhm M (2014) Global patterns of freshwater species diversity, threat and endemism. Glob Ecol Biogeogr 23(1):40–51. https://doi.org/10.1111/geb.12096

    Article  PubMed  Google Scholar 

  • Duggan IC (2001) The ecology of periphytic rotifers. Hydrobiologia 444(446):139–148

    Article  Google Scholar 

  • Duggan IC, Green JD, Thompson K, Shiel RJ (2001) The influence of macrophytes on the spatial distribution of littoral rotifers. Freshw Biol 46(6):777–786. https://doi.org/10.1046/j.1365-2427.2001.00718.x

    Article  Google Scholar 

  • Edmondson WT (1959) The Rotifera. Ward and Whipple's Freshwater Biology, 2nd ed. Wiley, New York

  • Ejsmont-Karabin J, Karpowicz M (2021) Rotifera in lake subhabitats. Aquat Ecol 55:1285–1296. https://doi.org/10.1007/s10452-020-09818-1

    Article  Google Scholar 

  • Espinosa-Rodríguez CA, Sarma SSS, Nandini S (2020) Zooplankton community changes in relation to different macrophyte species: effects of Egeria densa removal. Ecohydrol Hydrobiol 21(1):153–163. https://doi.org/10.1016/j.ecohyd.2020.08.007

    Article  Google Scholar 

  • Fontaneto D, De Smet W (2015) Rotifera. In: Schmidt-Rhaesa A (ed) Handbook of zoology, gastrotricha, cycloneuralia. and gnathifera, vol 3. De Gruyter, Berlin

  • García-Chicote J, Armengol X, Rojo C (2019) Zooplankton species as indicators of trophic state in reservoirs from Mediterranean river basins. Inland Waters 9(1):113–123. https://doi.org/10.1080/20442041.2018.1519352

    Article  CAS  Google Scholar 

  • Gaston KJ (2000) Global patterns in biodiversity. Nature 405(6783):220–227. https://doi.org/10.1038/35012228

    Article  CAS  PubMed  Google Scholar 

  • Gilbert JJ (2013) The cost of predator-induced morphological defense in rotifers: experimental studies and synthesis. J Plankton Res 35(3):461–472. https://doi.org/10.1093/plankt/fbt017

    Article  Google Scholar 

  • Gomes LF, Pereira HR, Gomes ACAM, Vieira MC, Martins PR, Roitman I, Vieira LCG (2019) Zooplankton functional-approach studies in continental aquatic environments: a systematic review. Aquat Ecol 53:191–203. https://doi.org/10.1007/s10452-019-09682-8(0123456789(),-volV)(01234567

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. https://doi.org/10.1046/j.1461-0248.2001.00230.x

    Article  Google Scholar 

  • Hébert MP, Beisner BE, Maranger R (2017) Linking zooplankton communities to ecosystem functioning: toward an effect-trait framework. J Plankt Res 39(1):3–12. https://doi.org/10.1093/plankt/fbw068

    Article  CAS  Google Scholar 

  • Henry R (2003) Os ecótones nas interfaces dos ecossistemas aquáticos: conceitos, tipos, processos e importância. Estudo de aplicação em lagoas marginais ao rio Paranapanema na zona de sua desembocadura na represa de Jurumirim. In: Henry R (ed) Ecótonos nas interfaces dos ecossistemas aquáticos. RiMa, São Carlos

  • Holland MM (1988) SCOPE/MAB technical consultations on landscape boundaries: report of a SCOPE/MAB workshop on ecotones. In: Castri FD, Hansen AJ, Holland MM (eds) A new look at ecotones: emerging international projects on landscape boundaries. Biology International

  • Hsieh TC, Ma KH, Chao A (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (H ill numbers). Methods Ecol Evol 7(12):1451–1456. https://doi.org/10.1111/2041-210X.12613

    Article  Google Scholar 

  • Karabin A (1985) Pelagic zooplankton (Rotatoria+ Crustacea) variation in the process of lake eutrophication. II: Modifying effect of biotic agents. Pol J Biol 33(4): 617–644

  • Kark S (2013) Ecotones and ecological gradients. In: Leemans R (ed) Ecological systems. Springer, New York

  • Koste W, Shiel RJ (1987) Rotifera from Australian inland waters. II. Epiphanidae and brachionidae (Rotifera: Monogononta). Invertebr Systemat 1(7): 949–1021

  • Koste W (1978) Rotatoria: die Rädertiere Mitteleuropas Ein Bestimmungswerk begrüdet von Max Voigt. Gebruder Borntraeger, Berlim

  • Laliberté E, Legendre P, Shipley B, Laliberté ME (2014) FD: Measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1):299–305. https://doi.org/10.1890/08-2244.1

    Article  PubMed  Google Scholar 

  • Lucena-Moya P, Duggan IC (2011) Macrophyte architecture affects the abundance and diversity of littoral microfauna. Aquat Ecol 45:279–287. https://doi.org/10.1007/s10452-011-9353-0

    Article  Google Scholar 

  • Martins BA, Coelho PN, Nogueira MG, Perbiche-Neves G (2020) Composition and richness of monogonont rotifers from La Plata River Basin, South America Biota Neotrop 20(4):e20201001. https://doi.org/10.1590/1676-0611-BN-2020-1001

    Article  Google Scholar 

  • Mouillot D, Graham NA, Villéger S, Mason NW, Bellwood DR (2013) A functional approach reveals community responses to disturbances. Trends Ecol Evol 28(3):167–177. https://doi.org/10.1016/j.tree.2012.10.004

    Article  PubMed  Google Scholar 

  • Nogrady T, Segers H (2002) The Asplanchnidae, Gastropodidae, Lindiidae, Microcodinidae, Synchaetidae, Trochosphaeridae. Guides to the identification of the microinvertebrates of the continental waters of the world. Backhuys Publishers BV, Dordrecht, The Netherlands

  • Obertegger U, Flaim G (2015) Community assembly of rotifers based on morphological traits. Hydrobiologia 753(1):31–45. https://doi.org/10.1007/s10750-015-2191-7

    Article  Google Scholar 

  • Obertegger U, Flaim G (2018) Taxonomic and functional diversity of rotifers, what do they tell us about community assembly? Hydrobiologia 823(1):79–91. https://doi.org/10.1007/s10750-018-3697-6

    Article  Google Scholar 

  • Obertegger U, Smith HA, Flaim G, Wallace RL (2011) Using the guild ratio to characterize pelagic rotifer communities. Hydrobiologia 662(1):157–162. https://doi.org/10.1007/s10750-010-0491-5

    Article  Google Scholar 

  • Odum EP (2004) Fundamentos de ecologia. (6th ed). Fundação calouste Gulbenkian, Lisboa

  • Oh HJ, Jeong HG, Nam GS, Oda Y, Dai W, Lee EH, Kong D, Hwang SJ, Chang KH (2017) Comparison of taxon-based and trophi-based response patterns of rotifer community to water quality: applicability of the rotifer functional group as an indicator of water quality. Anim Cells Syst 21(2):133–140. https://doi.org/10.1080/19768354.2017.1292952

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, et al (2019) Vegan: community ecology package. R package version 2.5-6. http:// vegan.r-forge.r-project.org. Accessed 25 September 2020

  • Paggi SBJ, Muñoz S, Frau D, Paggi JC, Scarabotti P, Devercelli M, Meerhoff M (2012) Horizontal distribution of rotifers in a subtropical shallow lake (Paraná floodplain, Argentina). Fundam Appl Limnol 180(4):321–333. https://doi.org/10.1127/1863-9135/2012/0245

    Article  Google Scholar 

  • Paggi SBJ, Wallace R, Fontaneto D, Marinone MC (2020) Phylum rotifera. In: Damborenea C, Rogers DC, Thorp JH (eds) Thorp and Covich's freshwater invertebrates. Vol. V: key to neotropical and antarctic fauna damborenea. Academic Press, London

  • Pavoine S, Vallet J, Dufour AB, Gachet S, Daniel H (2009) On the challenge of treating various types of variables: application for improving the measurement of functional diversity. Oikos 118(3):391–402. https://doi.org/10.1111/j.1600-0706.2008.16668.x

    Article  Google Scholar 

  • Pejler B, Bērziņš B (1994) On the ecology of Lecane (Rotifera). Hydrobiologia 273(2):77–80

    Article  Google Scholar 

  • Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9(6):741–758. https://doi.org/10.1111/j.1461-0248.2006.00924.x

    Article  PubMed  Google Scholar 

  • Pla L, Casanoves F, Di Rienzo J (2012) Functional diversity indices. In: Pla L, Casanoves F, Di Rienzo J (eds) Quantifying functional biodiversity. Springer, Dordrecht

  • Pourriot R (1977) Food and feeding habits of Rotifera. Archiv Fur Hydrobiol Beihefte 8:243–260

    Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/. Accessed 19 September 2020

  • Roche KF (1987) Post-encounter vulnerability of some rotifer prey types to predation by the copepod Acanthocyclops robustus. Hydrobiologia 147:229–233

    Article  Google Scholar 

  • Romo S, Miracle MR, Villena MJ, Rueda J, Ferriol C, Vicente E (2004) Mesocosm experiments on nutrient and fish effects on shallow lake food webs in a Mediterranean climate. Freshw Biol 49(12):1593–1607. https://doi.org/10.1111/j.1365-2427.2004.01305.x

    Article  CAS  Google Scholar 

  • Salt GW, Sabbadini GF, Commins ML (1978) Trophi morphology relative to food habits in six species of rotifers (Asplanchnidae). Trans Am Microsc Soc 97(4):469–485. https://doi.org/10.2307/3226164

    Article  Google Scholar 

  • Santos SAM, Santos TR, Furtado MS, Henry R, Ferragut C (2018) Periphyton nutrient content, biomass and algal community on artificial substrate: response to experimental nutrient enrichment and the effect of its interruption in a tropical reservoir. Limnology 19:209–218. https://doi.org/10.1007/s10201-017-0533-z

    Article  CAS  Google Scholar 

  • Schluter D, Pennell MW (2017) Speciation gradients and the distribution of biodiversity. Nature 546(7656):48–55. https://doi.org/10.1038/nature22897

    Article  CAS  PubMed  Google Scholar 

  • Segers H (1995) Rotifera 2. The Lecanidae (Monogononta). In: Dumont HJ, Nogrady T (eds) Guides to the identification of the microinvertebrates of the continental waters of the world 6. SPB Academic Publishing, The Hague, The Netherlands

  • Serafim-Júnior M, Perbiche-Neves G, Lansac-Tôha FA (2019) An assessment of the factors determining rotifer assemblage in river-lake systems: the effects of seasonality and habitat. Zoologia (Curitiba) 36:e24191. https://doi.org/10.3897/zoologia.36.e24191

    Article  Google Scholar 

  • Sládeček V (1983) Rotifers as indicators of water quality. Hydrobiologia 100(1):169–201

    Article  Google Scholar 

  • Smith TB, Kark S, Schneider CJ, Wayne RK, Moritz C (2001) Biodiversity hotspots and beyond: the need for preserving environmental transitions. Trends Ecol Evol 16(8):431. https://doi.org/10.1016/S0169-5347(01)02201-7

    Article  Google Scholar 

  • Soares MCS, Lürling M, Huszar VL (2010) Responses of the rotifer Brachionus calyciflorus to two tropical toxic cyanobacteria (Cylindrospermopsis raciborskii and Microcystis aeruginosa) in pure and mixed diets with green algae. J Plankt Res 32(7):999–1008. https://doi.org/10.1093/plankt/fbq042

    Article  CAS  Google Scholar 

  • Song Y, Wang P, Li G, Zhou D (2014) Relationships between functional diversity and ecosystem functioning: a review. Acta Ecol Sin 34(2):85–91. https://doi.org/10.1016/j.chnaes.2014.01.001

    Article  CAS  Google Scholar 

  • Stemberger RS (1985) Prey selection by the copepod Diacyclops thomasi. Oecologia 65:492–497

    Article  Google Scholar 

  • Telesh IV (1993) The effect of fish on planktonic rotifers. Hydrobiologia 255(1):289–296

    Article  Google Scholar 

  • Villéger S, Mason NW, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89(8):2290–2301. https://doi.org/10.1890/07-1206.1

    Article  PubMed  Google Scholar 

  • Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116(5):882–892. https://doi.org/10.1111/j.0030-1299.2007.15559.x

    Article  Google Scholar 

  • Wallace RL, Snell TW, Ricci C, Nogrady T (2006) Rotifera: biology, ecology and systematics, 2nd edn. Backhuys Publishers, Leiden

    Google Scholar 

  • Walsh EJ (1989) Oviposition behavior of the littoral rotifer Euchlanis dilatata. Hydrobiologia 186(1):157–161

    Article  Google Scholar 

  • Williamson CE (1987) Predator-prey interactions between omnivorous diaptomid copepods and rotifers: The role of prey morphology and behavior 1. Limnol Oceanogr 32(1):167–177. https://doi.org/10.4319/lo.1987.32.1.0167

    Article  Google Scholar 

  • Woodward G, Ebenman B, Emmerson M, Montoya JM, Olesen JM, Valido A, Warren PH (2005) Body size in ecological networks. Trends Ecol Evol 20(7):402–409. https://doi.org/10.1016/j.tree.2005.04.005

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank to Hamilton Rodrigues, Joaquim N. Costa, and Lúcio. M. Oliveira for help us in the fieldwork and James A. Nienow for English editing. We are grateful to Iollanda Josué for helping us with CWM analysis. The first author received scholarship of Conselho Nacional de Desenvolvimento Ciêntífico e Tecnológico (CNPq—141323/2018-3).

Funding

Conselho Nacional de Desenvolvimento Ciêntífico e Tecnológico (CNPq—141323/2018-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Nunes Coelho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Jamie Kneitel.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 75 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coelho, P.N., Henry, R. Is the littoral zone taxonomically and functionally more diverse? Investigating the rotifer community of a tropical shallow lake. Limnology 23, 429–440 (2022). https://doi.org/10.1007/s10201-022-00697-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10201-022-00697-z

Keywords

Navigation