1932

Abstract

Strain glass is a new strain state discovered recently in ferroelastic systems that is characterized by nanoscale martensitic domains formed through a freezing transition. These nanodomains typically have mottled or tweed morphology depending on the elastic anisotropy of the system. Strain glass transition is a broadly smeared and high order–like transition, taking place within a wide temperature or stress range. It is accompanied by many unique properties, including linear superelasticity with high strength, low modulus, Invar and Elinvar anomalies, and large magnetostriction. In this review, we first discuss experimental characterization and testing that have led to the discovery of the strain glass transition and its unique properties. We then introduce theoretical models and computer simulations that have shed light on the origin and mechanisms underlying the unique characteristics and properties of strain glass transitions. Unresolved issues and challenges in strain glass study are also addressed. Strain glass transition can offer giant elastic strain and ultralow elastic modulus by well-controlled reversible structural phase transformations through defect engineering.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-081720-091919
2022-07-01
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/matsci/52/1/annurev-matsci-081720-091919.html?itemId=/content/journals/10.1146/annurev-matsci-081720-091919&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Otsuka K, Wayman CM, Nakai K, Sakamoto H, Shimizu K. 1976. Superelasticity effects and stress-induced martensitic transformations in Cu-Al-Ni alloys. Acta Metall. 24:207–26
    [Google Scholar]
  2. 2.
    Miyazaki S, Ohmi Y, Otsuka K, Suzuki Y. 1982. Characteristics of deformation and transformation pseudoelasticity in Ti-Ni alloys. J. Phys. 43:255–60
    [Google Scholar]
  3. 3.
    Perkins J 1975. Shape Memory Effects in Alloys: Proceedings of the International Symposium on Shape Memory Effects and Applications Held in Toronto, Ontario, Canada, May 1922, 1975 New York: Plenum
    [Google Scholar]
  4. 4.
    Bhattacharya K. 2003. Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect Oxford/New York: Oxford Univ. Press
  5. 5.
    Cui J, Ren X. 2014. Elinvar effect in Co-doped TiNi strain glass alloys. Appl. Phys. Lett. 105:061904
    [Google Scholar]
  6. 6.
    Wang Y, Gao J, Wu H, Yang S, Ding X et al. 2014. Strain glass transition in a multifunctional β-type Ti alloy. Sci. Rep. 4:3995
    [Google Scholar]
  7. 7.
    Qin F, Xiao W, Lu F, Ji Y, Zhao X, Ren X 2019. Resolution of a discrepancy of magnetic mechanism for Elinvar anomaly in Fe-Ni based alloys. J. Mater. Sci. Technol. 35:396–401
    [Google Scholar]
  8. 8.
    Damjanovic D. 2005. Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J. Am. Ceram. Soc. 88:2663–76
    [Google Scholar]
  9. 9.
    James RD, Wuttig M. 1998. Magnetostriction of martensite. Philos. Mag. A 77:1273–99
    [Google Scholar]
  10. 10.
    Li F, Jin L, Xu Z, Zhang SJ 2014. Electrostrictive effect in ferroelectrics: an alternative approach to improve piezoelectricity. Appl. Phys. Rev. 1:011103
    [Google Scholar]
  11. 11.
    Fischer FD, Reisner G, Werner E, Tanaka K, Cailletaud G, Antretter T. 2000. A new view on transformation induced plasticity (TRIP). Int. J. Plast. 16:723–48
    [Google Scholar]
  12. 12.
    Soleimani M, Kalhor A, Mirzadeh H. 2020. Transformation-induced plasticity (TRIP) in advanced steels: a review. Mater. Sci. Eng. A 795:140023
    [Google Scholar]
  13. 13.
    Sun F, Zhang JY, Marteleur M, Gloriant T, Vermaut P et al. 2013. Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects. Acta Mater 61:6406–17
    [Google Scholar]
  14. 14.
    Otsuka K, Ren X. 2005. Physical metallurgy of Ti-Ni-based shape memory alloys. Prog. Mater. Sci. 50:511–678
    [Google Scholar]
  15. 15.
    Hartl DJ, Lagoudas DC. 2007. Aerospace applications of shape memory alloys. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng. 221:535–52
    [Google Scholar]
  16. 16.
    Sreekumar M, Nagarajan T, Singaperumal M, Zoppi M, Molfino R. 2007. Critical review of current trends in shape memory alloy actuators for intelligent robots. Ind. Robot 34:285–94
    [Google Scholar]
  17. 17.
    Langbein S, Czechowicz A. 2012. Problems and solutions for shape memory actuators in automotive applications. In Proceedings of the ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Vol. 2 Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Bio-Inspired Materials and Systems; Energy Harvesting433–39 Stone Mountain, GA: ASME
    [Google Scholar]
  18. 18.
    Sarkar S, Ren X, Otsuka K. 2005. Evidence for strain glass in the ferroelastic-martensitic system Ti50−xNi50+x. Phys. Rev. Lett. 95:205702
    [Google Scholar]
  19. 19.
    Ren X, Wang Y, Zhou Y, Zhang Z, Wang D et al. 2010. Strain glass in ferroelastic systems: premartensitic tweed versus strain glass. Philos. Mag. 90:141–57
    [Google Scholar]
  20. 20.
    Sherrington D. 2014. A spin glass perspective on ferroic glasses. Phys. Status Solidi B 251:1967–81
    [Google Scholar]
  21. 21.
    Ji YC, Wang D, Wang Y, Zhou YM, Xue DZ et al. 2017. Ferroic glasses. NPJ Comput. Mater. 3:43
    [Google Scholar]
  22. 22.
    Semenovskaya S, Khachaturyan AG. 1992. Structural transformations in nonstoichiometric YBa2Cu3O6+δ. Phys. Rev. B 46:6511–34
    [Google Scholar]
  23. 23.
    Liang C, Wang D, Wang Z, Ding X, Wang Y. 2020. Revealing the atomistic mechanisms of strain glass transition in ferroelastics. Acta Mater. 194:134–43
    [Google Scholar]
  24. 24.
    Zong H, Wu H, Tao X, Xue D, Sun J et al. 2019. Percolated strain networks and universal scaling properties of strain glasses. Phys. Rev. Lett. 123:015701
    [Google Scholar]
  25. 25.
    Wang D, Zhang Z, Zhang J, Zhou Y, Wang Y et al. 2010. Strain glass in Fe-doped Ti–Ni. Acta Mater 58:6206–15
    [Google Scholar]
  26. 26.
    Zhou Y, Xue D, Ding X, Wang Y, Zhang J et al. 2010. Strain glass in doped Ti50(Ni50−xDx) (D = Co, Cr, Mn) alloys: implication for the generality of strain glass in defect-containing ferroelastic systems. Acta Mater 58:5433–42
    [Google Scholar]
  27. 27.
    Ji Y, Ding X, Lookman T, Otsuka K, Ren X. 2013. Heterogeneities and strain glass behavior: role of nanoscale precipitates in low-temperature-aged Ti48.7Ni51.3 alloys. Phys. Rev. B 87:104110
    [Google Scholar]
  28. 28.
    Zhou Z, Cui J, Ren X. 2015. Strain glass state as the boundary of two phase transitions. Sci. Rep. 5:13377
    [Google Scholar]
  29. 29.
    Zhang J, Xue D, Cai X, Ding X, Ren X, Sun J. 2016. Dislocation induced strain glass in Ti50Ni45Fe5 alloy. Acta Mater. 120:130–37
    [Google Scholar]
  30. 30.
    Liang Q, Wang D, Zhang J, Ji Y, Ding X et al. 2017. Novel B19′ strain glass with large recoverable strain. Phys. Rev. Mater. 1:033608
    [Google Scholar]
  31. 31.
    Ji Y, Wang D, Ding X, Otsuka K, Ren X. 2015. Origin of an isothermal R-martensite formation in Ni-rich Ti-Ni solid solution: crystallization of strain glass. Phys. Rev. Lett. 114:055701
    [Google Scholar]
  32. 32.
    Ji YC, Ding XD, Wang D, Otsuka K, Ren XB. 2015. Glass-ferroic composite caused by the crystallization of ferroic glass. Phys. Rev. B 92:241114
    [Google Scholar]
  33. 33.
    Zhang JY, Mao YW, Wang D, Li J, Wang YZ 2016. Accelerating ferroic ageing dynamics upon cooling. NPG Asia Mater 8:e319
    [Google Scholar]
  34. 34.
    Zhang Z, Wang Y, Wang D, Zhou Y, Otsuka K, Ren X. 2010. Phase diagram of Ti50−xNi50+x: crossover from martensite to strain glass. Phys. Rev. B 81:224102
    [Google Scholar]
  35. 35.
    Hao Y, Ji Y, Zhang Z, Yin M, Liu C et al. 2019. Strain glass in Ti50−xNi35+xCu15 shape memory alloys. Scripta Mater 168:71–75
    [Google Scholar]
  36. 36.
    Zhou Y, Xue D, Ding X, Otsuka K, Sun J, Ren X. 2014. High temperature strain glass transition in defect doped Ti–Pd martensitic alloys. Phys. Status Solidi B 251:2027–33
    [Google Scholar]
  37. 37.
    Zhou Y, Xue D, Tian Y, Ding X, Guo S et al. 2014. Direct evidence for local symmetry breaking during a strain glass transition. Phys. Rev. Lett. 112:025701
    [Google Scholar]
  38. 38.
    Ren S, Liu C, Chen X, Hao Y, Ren X. 2020. Strain glass by aging in Ti–Pd–Fe shape memory alloys. Scripta Mater 177:11–16
    [Google Scholar]
  39. 39.
    Ren S, Liu C, Wang WH. 2021. High temperature strain glass in Ti-Au and Ti-Pt based shape memory alloys. Chin. Phys. B 30:018101
    [Google Scholar]
  40. 40.
    Sun X, Cong D, Ren Y, Liss K-D, Brown DE et al. 2020. Magnetic-field-induced strain-glass-to-martensite transition in a Fe-Mn-Ga alloy. Acta Mater. 183:11–23
    [Google Scholar]
  41. 41.
    Wang DP, Chen X, Nie ZH, Li N, Wang ZL et al. 2012. Transition in superelasticity for Ni55−xCoxFe18Ga27 alloys due to strain glass transition. Europhys. Lett. 98:46004
    [Google Scholar]
  42. 42.
    Nevgi R, Priolkar KR, Acet M. 2021. Strain glass versus antisite disorder induced ferromagnetic state in Fe doped Ni-Mn-In Heusler martensites. J. Phys. D. Appl. Phys. 54:185002
    [Google Scholar]
  43. 43.
    Wang Y, Huang C, Gao J, Yang S, Ding X et al. 2012. Evidence for ferromagnetic strain glass in Ni-Co-Mn-Ga Heusler alloy system. 101101913
  44. 44.
    Yao YG, Yang YD, Ren S, Zhou C, Li LL, Ren XB. 2012. Ferroelastic and strain glass transition in (1-x)(Bi0.5Na0.5)TiO3-xBaTiO3 solid solution. Europhys. Lett. 100:17004
    [Google Scholar]
  45. 45.
    Ren S, Xue D, Ji Y, Liu X, Yang S, Ren X 2017. Low-field-triggered large magnetostriction in iron-palladium strain glass alloys. Phys. Rev. Lett. 119:125701
    [Google Scholar]
  46. 46.
    Liu J, Jin M, Ni C, Shen Y, Fan G et al. 2011. Strain glassy behavior and premartensitic transition in Au7Cu5Al4 alloy. Phys. Rev. B 84:140102
    [Google Scholar]
  47. 47.
    Lloveras P, Castán T, Porta M, Planes A, Saxena A. 2008. Influence of elastic anisotropy on structural nanoscale textures. Phys. Rev. Lett. 100:165707
    [Google Scholar]
  48. 48.
    Lloveras P, Castán T, Porta M, Planes A, Saxena A. 2009. Glassy behavior in martensites: interplay between elastic anisotropy and disorder in zero-field-cooling/field-cooling simulation experiments. Phys. Rev. B 80:054107
    [Google Scholar]
  49. 49.
    Wang D, Lv D, Gao Y, Wang Y, Ren X, Wang Y. 2016. Defect strength and strain glass state in ferroelastic systems. J. Alloy Compd. 661:100–9
    [Google Scholar]
  50. 50.
    Ahadi A, Sun Q. 2014. Effects of grain size on the rate-dependent thermomechanical responses of nanostructured superelastic NiTi. Acta Mater. 76:186–97
    [Google Scholar]
  51. 51.
    Tadaki T, Wayman CM. 1980. Crystal-structure and microstructure of a cold-worked TiNi alloy with unusual elastic behavior. Scr. Metall. 14:911–14
    [Google Scholar]
  52. 52.
    Rathod CR, Clausen B, Bourke MAM, Vaidyanathan R. 2006. Neutron diffraction investigation of hysteresis reduction and increase in linearity in the stress-strain response of superelastic NiTi. Appl. Phys. Lett. 88:201919
    [Google Scholar]
  53. 53.
    Zheng YF, Huang BM, Zhang JX, Zhao LC. 2000. The microstructure and linear superelasticity of cold-drawn TiNi alloy. Mater. Sci. Eng. A 279:25–35
    [Google Scholar]
  54. 54.
    Tang Z, Wang Y, Liao X, Wang D, Yang S, Song X 2015. Stress dependent transforming behaviors and associated functional properties of a nano-precipitates induced strain glass alloy. J. Alloy Compd. 622:622–27
    [Google Scholar]
  55. 55.
    Yu T, Gao Y, Casalena L, Anderson P, Mills M, Wang Y. 2021. H-phase precipitation and its effects on martensitic transformation in NiTi-Hf high-temperature shape memory alloys. Acta Mater. 208:116651
    [Google Scholar]
  56. 56.
    Zhu J, Wu H-H, Wu Y, Wang H, Zhang T et al. 2021. Influence of Ni4Ti3 precipitation on martensitic transformations in NiTi shape memory alloy: R phase transformation. Acta Mater. 207:116665
    [Google Scholar]
  57. 57.
    Liu J-P, Wang Y-D, Hao Y-L, Wang Y, Nie Z-H et al. 2013. New intrinsic mechanism on gum-like superelasticity of multifunctional alloys. Sci. Rep. 3:2156
    [Google Scholar]
  58. 58.
    Zhu J, Gao Y, Wang D, Zhang T-Y, Wang Y. 2017. Taming martensitic transformation via concentration modulation at nanoscale. Acta Mater. 130:196–207
    [Google Scholar]
  59. 59.
    Liang Q, Wang D, Zheng Y, Zhao S, Gao Y et al. 2020. Shuffle-nanodomain regulated strain glass transition in Ti-24Nb-4Zr-8Sn alloy. Acta Mater. 186:415–24
    [Google Scholar]
  60. 60.
    Hao SJ, Cui LS, Jiang DQ, Han XD, Ren Y et al. 2013. A transforming metal nanocomposite with large elastic strain, low modulus, and high strength. Science 339:1191–94
    [Google Scholar]
  61. 61.
    Wang D, Liang Q, Zhao S, Zhao P, Zhang T et al. 2019. Phase field simulation of martensitic transformation in pre-strained nanocomposite shape memory alloys. Acta Mater. 164:99–109
    [Google Scholar]
  62. 62.
    Shapiro SM, Noda Y, Fujii Y, Yamada Y. 1984. X-ray investigation of the premartensitic phase in Ni46.8Ti50Fe3.2. Phys. Rev. B 30:4314–21
    [Google Scholar]
  63. 63.
    Shindo D, Murakami Y, Ohba T. 2002. Understanding precursor phenomena for the R-phase transformation in Ti-Ni-based alloys. MRS Bull. 27:121–27
    [Google Scholar]
  64. 64.
    Otsuka K, Wayman CM. 1999. Shape Memory Materials Cambridge, UK: Cambridge Univ. Press
  65. 65.
    Choi MS, Fukuda T, Kakeshita T, Mori H. 2006. Incommensurate–commensurate transition and nanoscale domain-like structure in iron doped Ti–Ni shape memory alloys. Philos. Mag. 86:67–78
    [Google Scholar]
  66. 66.
    Choi M-S, Fukuda T, Kakeshita T. 2005. Anomalies in resistivity, magnetic susceptibility and specific heat in iron-doped Ti–Ni shape memory alloys. Scripta Mater 53:869–73
    [Google Scholar]
  67. 67.
    Wang Y, Ren XB, Otsuka K. 2008. Strain glass: glassy martensite. Mater. Sci. Forum 583:67–84
    [Google Scholar]
  68. 68.
    Wang D, Wang Y, Zhang Z, Ren X. 2010. Modeling abnormal strain states in ferroelastic systems: the role of point defects. Phys. Rev. Lett. 105:205702
    [Google Scholar]
  69. 69.
    Wang D, Hou S, Wang Y, Ding XD, Ren S et al. 2014. Superelasticity of slim hysteresis over a wide temperature range by nanodomains of martensite. Acta Mater. 66:349–59
    [Google Scholar]
  70. 70.
    Zhang J, Wang Y, Ding X, Zhang Z, Zhou Y et al. 2011. Spontaneous strain glass to martensite transition in a Ti50Ni44.5Fe5.5 strain glass. Phys. Rev. B 84:214201
    [Google Scholar]
  71. 71.
    Hou S, Wang Y, Zhang J, Wang D, Ren S, Ren X. 2012. Evidence for crossover martensite in Ti50Ni45Fe5: an intermediate state between normal martensite and strain glass. Europhys. Lett. 100:58001
    [Google Scholar]
  72. 72.
    Chien C, Tsao C-S, Wu S-K, Chang C-Y, Chang P-C, Kuo Y-K. 2016. Characteristics of the strain glass transition in as-quenched and 250°C early-aged Ti48.7Ni51.3 shape memory alloy. Acta Mater. 120:159–67
    [Google Scholar]
  73. 73.
    Wang Y, Zhou Y, Zhang J, Ding X, Yang S et al. 2010. Evolution of the relaxation spectrum during the strain glass transition of Ti48.5Ni51.5 alloy. Acta Mater. 58:4723–29
    [Google Scholar]
  74. 74.
    Narayanaswamy OS. 1971. A model of structural relaxation in glass. J. Am. Ceram. Soc. 54:491–98
    [Google Scholar]
  75. 75.
    Bennemann C, Paul W, Binder K, Dünweg B. 1998. Molecular-dynamics simulations of the thermal glass transition in polymer melts: α-relaxation behavior. Phys. Rev. E 57:843–51
    [Google Scholar]
  76. 76.
    Slipenyuk A, Eckert J. 2004. Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass. Scripta Mater 50:39–44
    [Google Scholar]
  77. 77.
    Wang Y, Ren X, Otsuka K, Saxena A. 2008. Temperature–stress phase diagram of strain glass Ti48.5Ni51.5. Acta Mater. 56:2885–96
    [Google Scholar]
  78. 78.
    Mydosh JA. 1993. Spin Glasses: An Experimental Introduction London/Washington, DC: Taylor Francis:
  79. 79.
    Ghosh G, Olson GB. 1994. Kinetics of F.C.C. → B.C.C. heterogeneous martensitic nucleation—I. The critical driving force for athermal nucleation. Acta Metall. Mater. 42:3361–70
    [Google Scholar]
  80. 80.
    Wang Y, Huang C, Wu H, Gao J, Yang S et al. 2013. Spontaneous strain glass to martensite transition in ferromagnetic Ni-Co-Mn-Ga strain glass. Appl. Phys. Lett. 102:141909
    [Google Scholar]
  81. 81.
    Chu F, Setter N, Tagantsev AK. 1993. The spontaneous relaxor-ferroelectric transition of Pb(Sc0.5Ta0.5)O3. J. Appl. Phys. 74:5129–34
    [Google Scholar]
  82. 82.
    Chu F, Reaney IM, Setter N. 1995. Spontaneous (zero-field) relaxor-to-ferroelectric-phase transition in disordered Pb(Sc1/2Nb1/2)O3. J. Appl. Phys. 77:1671–76
    [Google Scholar]
  83. 83.
    Fang M, Ji Y, Zhang Z, Yang Y, Liu C et al. 2018. Re-entrant relaxor–ferroelectric composite showing exceptional electromechanical properties. NPG Asia Mater 10:1029–36
    [Google Scholar]
  84. 84.
    Wang Y, Ren X, Otsuka K, Saxena A. 2007. Evidence for broken ergodicity in strain glass. Phys. Rev. B 76:132201
    [Google Scholar]
  85. 85.
    Novák V, Šittner P, Dayananda GN, Braz-Fernandes FM, Mahesh KK 2008. Electric resistance variation of NiTi shape memory alloy wires in thermomechanical tests: experiments and simulation. Mater. Sci. Eng. A 481–482:127–33
    [Google Scholar]
  86. 86.
    Ling HC, Kaplow R. 1980. Phase-transitions and shape memory in NiTi. Metall. Trans. A 11:77–83
    [Google Scholar]
  87. 87.
    Bag P, Chang P-C, Kuo Y-K, Wu S-K, Lin C, Li B-Y. 2019. Coexistence of martensite and strain glass phases in homogenized Ni-rich TiNi shape memory alloys. Intermetallics 109:16–23
    [Google Scholar]
  88. 88.
    Kartha S, Krumhansl JA, Sethna JP, Wickham LK. 1995. Disorder-driven pretransitional tweed pattern in martensitic transformations. Phys. Rev. B 52:803–22
    [Google Scholar]
  89. 89.
    Zhang LX, Wang D, Ren XB, Wang YZ. 2015. A new mechanism for low and temperature-independent elastic modulus. Sci. Rep. 5:11477
    [Google Scholar]
  90. 90.
    Zhou Y, Yuan R, Xue D, Wang D, Ding X et al. 2021. Tailoring thermal expansion coefficient from positive through zero to negative in the compositional crossover alloy Ti50(Pd40Cr10) by uniaxial tensile stress. Mater. Des. 199:109431
    [Google Scholar]
  91. 91.
    Demakov SL, Stepanov SI, Illarionov AG, Ryzhkov MA. 2017. Thermal-expansion anisotropy of orthorhombic martensite in the two-phase (α + β) titanium alloy. Phys. Met Metallogr. 118:264–71
    [Google Scholar]
  92. 92.
    Khan PY, Ren S, Ma T, Ren X. 2020. Magnetostriction enhancement in ferromagnetic strain glass by approaching the crossover of martensite. Appl. Phys. Lett. 116:072402
    [Google Scholar]
  93. 93.
    Wang Y, Ren X, Otsuka K. 2006. Shape memory effect and superelasticity in a strain glass alloy. Phys. Rev. Lett. 97:225703
    [Google Scholar]
  94. 94.
    Semenovskaya S, Khachaturyan AG. 1997. Coherent structural transformations in random crystalline systems. Acta Mater. 45:4367–84
    [Google Scholar]
  95. 95.
    Levanik AP, Sigov AS. 1988. Defects and Structural Phase Transitions New York: Gordon Breach Sci.
  96. 96.
    Vasseur R, Lookman T. 2010. Effects of disorder in ferroelastics: a spin model for strain glass. Phys. Rev. B 81:094107
    [Google Scholar]
  97. 97.
    Wang Y, Li J 2010. Phase field modeling of defects and deformation. Acta Mater. 58:1212–35
    [Google Scholar]
  98. 98.
    Wang Y, Khachaturyan AG. 1997. Three-dimensional field model and computer modeling of martensitic transformations. Acta Mater. 45:759–73
    [Google Scholar]
  99. 99.
    Vasseur R, Xue D, Zhou Y, Ettoumi W, Ding X et al. 2012. Phase diagram of ferroelastic systems in the presence of disorder: analytical model and experimental verification. Phys. Rev. B 86:184103
    [Google Scholar]
  100. 100.
    Salje EKH, Ding X, Aktas O. 2014. Domain glass. Phys. Status Solidi B 251:2061–66
    [Google Scholar]
  101. 101.
    Nguyen L, Wang D, Wang Y, De Graef M. 2015. Quantifying the abnormal strain state in ferroelastic materials: a moment invariant approach. Acta Mater. 94:172–80
    [Google Scholar]
  102. 102.
    Gao Y, Zhou N, Yang F, Cui Y, Kovarik L et al. 2012. P-phase precipitation and its effect on martensitic transformation in (Ni,Pt)Ti shape memory alloys. Acta Mater. 60:1514–27
    [Google Scholar]
  103. 103.
    Zhou N, Shen C, Wagner MFX, Eggeler G, Mills MJ, Wang Y. 2010. Effect of Ni4Ti3 precipitation on martensitic transformation in Ti–Ni. Acta Mater. 58:6685–94
    [Google Scholar]
  104. 104.
    Zhang W, Jin YM, Khachaturyan AG. 2007. Modelling of dislocation-induced martensitic transformation in anisotropic crystals. Philos. Mag. 87:1545–63
    [Google Scholar]
  105. 105.
    Xu YC, Rao WF, Morris JW, Khachaturyan AG. 2018. Nanoembryonic thermoelastic equilibrium and enhanced properties of defected pretransitional materials. NPJ Comput. Mater. 4:58
    [Google Scholar]
  106. 106.
    Javanbakht M, Levitas VI. 2015. Interaction between phase transformations and dislocations at the nanoscale. Part 2: phase field simulation examples. J. Mech. Phys. Solids 82:164–85
    [Google Scholar]
  107. 107.
    Kundin J, Raabe D, Emmerich H. 2011. A phase-field model for incoherent martensitic transformations including plastic accommodation processes in the austenite. J. Mech. Phys. Solids 59:2082–102
    [Google Scholar]
  108. 108.
    Ren S, Zhou C, Xue DZ, Wang D, Zhang J et al. 2016. Sandwichlike strain glass phase diagram of Ti49Ni51−xPdx. Phys. Rev. B 94:214112
    [Google Scholar]
  109. 109.
    Nii Y, Arima T, Kim HY, Miyazaki S. 2010. Effect of randomness on ferroelastic transitions: disorder-induced hysteresis loop rounding in Ti-Nb-O martensitic alloy. Phys. Rev. B 82:214104
    [Google Scholar]
  110. 110.
    Robertson IM, Wayman CM. 1983. Tweed microstructures I. Characterization in β-NiAl. Philos. Mag. A 48:421–42
    [Google Scholar]
  111. 111.
    Koike J, Parkin DM, Nastasi M. 1990. Crystal-to-amorphous transformation of NiTi induced by cold rolling. J. Mater. Res. 5:1414–18
    [Google Scholar]
  112. 112.
    Gall K, Tyber J, Wilkesanders G, Robertson SW, RO Ritchie, Maier HJ. 2008. Effect of microstructure on the fatigue of hot-rolled and cold-drawn NiTi shape memory alloys. Mater. Sci. Eng. A 486:389–403
    [Google Scholar]
  113. 113.
    Liang Q, Kloenne Z, Zheng Y, Wang D, Antonov S et al. 2020. The role of nano-scaled structural non-uniformities on deformation twinning and stress-induced transformation in a cold rolled multifunctional β-titanium alloy. Scripta Mater 177:181–85
    [Google Scholar]
  114. 114.
    Antonov S, Kloenne Z, Gao Y, Wang D, Feng Q et al. 2020. Novel deformation twinning system in a cold rolled high-strength metastable-β Ti-5Al-5V-5Mo-3Cr-0.5Fe alloy. Materialia 9:100614
    [Google Scholar]
  115. 115.
    Gao Y. 2019. Symmetry and pathway analyses of the twinning modes in Ni–Ti shape memory alloys. Materialia 6:100320
    [Google Scholar]
  116. 116.
    McCormick PG, Liu Y. 1994. Thermodynamic analysis of the martensitic transformation in NiTi—II. Effect of transformation cycling. Acta Metall. Mater. 42:2407–13
    [Google Scholar]
  117. 117.
    Melton KN, Mercier O. 1979. Fatigue of NiTi thermoelastic martensites. Acta Metall. 27:137–44
    [Google Scholar]
  118. 118.
    Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner M. 2004. Structural and functional fatigue of NiTi shape memory alloys. Mater. Sci. Eng. A 378:24–33
    [Google Scholar]
  119. 119.
    Guo W, Steinbach I, Somsen C, Eggeler G. 2011. On the effect of superimposed external stresses on the nucleation and growth of Ni4Ti3 particles: a parametric phase field study. Acta Mater. 59:3287–96
    [Google Scholar]
  120. 120.
    Khalil-Allafi J, Dlouhy A, Eggeler G. 2002. Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations. Acta Mater. 50:4255–74
    [Google Scholar]
  121. 121.
    Khalil Allafi J, Ren X, Eggeler G. 2002. The mechanism of multistage martensitic transformations in aged Ni-rich NiTi shape memory alloys. Acta Mater. 50:793–803
    [Google Scholar]
  122. 122.
    Favier D, Liu Y, Orgéas L, Sandel A, Debove L, Comte-Gaz P. 2006. Influence of thermomechanical processing on the superelastic properties of a Ni-rich Nitinol shape memory alloy. Mater. Sci. Eng. A 429:130–36
    [Google Scholar]
  123. 123.
    Qin S-J, Shang J-X, Wang F-H, Chen Y. 2017. The role of strain glass state in the shape memory alloy Ni50+xTi50−x: insight from an atomistic study. Mater. Des. 120:238–54
    [Google Scholar]
  124. 124.
    Stonaha PJ, Karaman I, Arroyave R, Salas D, Bruno NM et al. 2018. Glassy phonon heralds a strain glass state in a shape memory alloy. Phys. Rev. Lett. 120:245701
    [Google Scholar]
  125. 125.
    Yu HB, Shen X, Wang Z, Gu L, Wang WH, Bai HY. 2012. Tensile plasticity in metallic glasses with pronounced β relaxations. Phys. Rev. Lett. 108:015504
    [Google Scholar]
  126. 126.
    Popli R, Glotin M, Mandelkern L, Benson RS. 1984. Dynamic mechanical studies of α and β relaxations of polyethylenes. J. Polym. Sci. 22:407–48
    [Google Scholar]
  127. 127.
    Gleiter H. 1991. Nanocrystalline Materials Berlin/Heidelberg, Ger.: Springer
  128. 128.
    Hammond PT. 2004. Form and function in multilayer assembly: new applications at the nanoscale. Adv. Mater. 16:1271–93
    [Google Scholar]
  129. 129.
    Cheng S, Zhao YH, Zhu YT, Ma E 2007. Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation. Acta Mater. 55:5822–32
    [Google Scholar]
  130. 130.
    Niebieskikwiat D, Salamon MB. 2005. Intrinsic interface exchange coupling of ferromagnetic nanodomains in a charge ordered manganite. Phys. Rev. B 72:174422
    [Google Scholar]
  131. 131.
    Shvartsman VV, Kholkin AL, Orlova A, Kiselev D, Bogomolov AA, Sternberg A. 2005. Polar nanodomains and local ferroelectric phenomena in relaxor lead lanthanum zirconate titanate ceramics. Appl. Phys. Lett. 86:202907
    [Google Scholar]
  132. 132.
    Ajayan PM, Schadler LS, Braun PV. 2003. Nanocomposite Science and Technology Weinheim, Ger: Wiley-VCH
  133. 133.
    Moriarty P. 2001. Nanostructured materials. Rep. Prog. Phys. 64:297–381
    [Google Scholar]
  134. 134.
    Van Humbeeck J. 2001. Shape memory alloys: a material and a technology. Adv. Eng. Mater. 3:837–50
    [Google Scholar]
  135. 135.
    Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner M. 2004. Structural and functional fatigue of NiTi shape memory alloys. Mater. Sci. Eng. A 378:24–33
    [Google Scholar]
  136. 136.
    Zhang J, Somsen C, Simon T, Ding X, Hou S et al. 2012. Leaf-like dislocation substructures and the decrease of martensitic start temperatures: a new explanation for functional fatigue during thermally induced martensitic transformations in coarse-grained Ni-rich Ti–Ni shape memory alloys. Acta Mater. 60:1999–2006
    [Google Scholar]
  137. 137.
    Simon T, Kröger A, Somsen C, Dlouhy A, Eggeler G. 2010. On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys. Acta Mater. 58:1850–60
    [Google Scholar]
  138. 138.
    De Cooman BC, Estrin Y, Kim SK. 2018. Twinning-induced plasticity (TWIP) steels. Acta Mater. 142:283–362
    [Google Scholar]
  139. 139.
    De Cooman BC. 2004. Structure–properties relationship in TRIP steels containing carbide-free bainite. Curr. Opin. Solid State Mater. Sci. 8:285–303
    [Google Scholar]
  140. 140.
    Grässel O, Krüger L, Frommeyer G, Meyer LW. 2000. High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development — properties — application. Int. J. Plast. 16:1391–409
    [Google Scholar]
  141. 141.
    Zhang J, Tasan CC, Lai MJ, Dippel AC, Raabe D. 2017. Complexion-mediated martensitic phase transformation in titanium. Nat. Commun. 8:14210
    [Google Scholar]
  142. 142.
    Zhao G-H, Xu X, Dye D, Rivera-Díaz-del-Castillo PEJ. 2020. Microstructural evolution and strain-hardening in TWIP Ti alloys. Acta Mater. 183:155–64
    [Google Scholar]
  143. 143.
    Marteleur M, Sun F, Gloriant T, Vermaut P, Jacques PJ, Prima F. 2012. On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects. Scripta Mater 66:749–52
    [Google Scholar]
  144. 144.
    Hou HL, Simsek E, Ma T, Johnson NS, Qian SX et al. 2019. Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing. Science 366:1116
    [Google Scholar]
  145. 145.
    Zhang T, Huang Z, Yang T, Kong H, Luan J et al. 2021. In situ design of advanced titanium alloy with concentration modulations by additive manufacturing. Science 374:478–82
    [Google Scholar]
  146. 146.
    Pirgazi H, Akbarzadeh A, Petrov R, Kestens L. 2008. Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding. Mater. Sci. Eng. A 497:132–38
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-081720-091919
Loading
/content/journals/10.1146/annurev-matsci-081720-091919
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error