1932

Abstract

Interactions between the nervous and immune systems were recognized long ago, but recent studies show that this crosstalk occurs more frequently than was previously appreciated. Moreover, technological advances have enabled the identification of the molecular mediators and receptors that enable the interaction between these two complex systems and provide new insights on the role of neuroimmune crosstalk in organismal physiology. Most neuroimmune interactions occur at discrete anatomical locations in which neurons and immune cells colocalize. Here, we describe the interactions of the different branches of the peripheral nervous system with immune cells in various organs, including the skin, intestine, lung, and adipose tissue. We highlight how neuroimmune crosstalk orchestrates physiological processes such as host defense, tissue repair, metabolism, and thermogenesis. Unraveling these intricate relationships is invaluable to explore the therapeutic potential of neuroimmune interactions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-111020-105359
2022-07-08
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/neuro/45/1/annurev-neuro-111020-105359.html?itemId=/content/journals/10.1146/annurev-neuro-111020-105359&mimeType=html&fmt=ahah

Literature Cited

  1. Afan AM, Broome CS, Nicholls SE, Whetton AD, Miyan JA. 1997. Bone marrow innervation regulates cellular retention in the murine haemopoietic system. Br. J. Haematol. 98:3569–77
    [Google Scholar]
  2. Andersson RG, Grundström N. 1987. Innervation of airway smooth muscle. Efferent mechanisms. Pharmacol. Ther. 32:2107–30
    [Google Scholar]
  3. Arranz L, Sánchez-Aguilera A, Martín-Pérez D, Isern J, Langa X et al. 2014. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature 512:751278–81
    [Google Scholar]
  4. Bai A, Lu N, Guo Y, Chen J, Liu Z 2009. Modulation of inflammatory response via α2-adrenoceptor blockade in acute murine colitis. Clin. Exp. Immunol. 156:2353–62
    [Google Scholar]
  5. Baral P, Umans BD, Li L, Wallrapp A, Bist M et al. 2018. Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia. Nat. Med. 24:4417–26
    [Google Scholar]
  6. Barnes PJ. 1986. Non-adrenergic non-cholinergic neural control of human airways. Arch. Int. Pharmacodyn. Ther. 280:2 Suppl208–28
    [Google Scholar]
  7. Bartness TJ, Vaughan CH, Song CK. 2010. Sympathetic and sensory innervation of brown adipose tissue. Int. J. Obes. 34:Suppl. 1S36–42
    [Google Scholar]
  8. Belai A, Boulos PB, Robson T, Burnstock G. 1997. Neurochemical coding in the small intestine of patients with Crohn's disease. Gut 40:6767–74
    [Google Scholar]
  9. Bellavance M-A, Rivest S. 2014. The HPA–immune axis and the immunomodulatory actions of glucocorticoids in the brain. Front. Immunol. 5:136
    [Google Scholar]
  10. Bellinger DL, Felten SY, Lorton D, Felten DL. 1989. Origin of noradrenergic innervation of the spleen in rats. Brain Behav. Immun. 3:4291–311
    [Google Scholar]
  11. Bellinger DL, Lorton D. 2014. Autonomic regulation of cellular immune function. Auton. Neurosci. 182:15–41
    [Google Scholar]
  12. Binshtok AM, Wang H, Zimmermann K, Amaya F, Vardeh D et al. 2008. Nociceptors are interleukin-1β sensors. J. Neurosci. 28:5214062–73
    [Google Scholar]
  13. Blackshaw LA, Gebhart GF. 2002. The pharmacology of gastrointestinal nociceptive pathways. Curr. Opin. Pharmacol. 2:6642–49
    [Google Scholar]
  14. Blake KJ, Baral P, Voisin T, Lubkin A, Pinho-Ribeiro FA et al. 2018. Staphylococcus aureus produces pain through pore-forming toxins and neuronal TRPV1 that is silenced by QX-314. Nat. Commun. 9:137
    [Google Scholar]
  15. Bratton BO, Martelli D, McKinley MJ, Trevaks D, Anderson CR, McAllen RM. 2012. Neural regulation of inflammation: no neural connection from the vagus to splenic sympathetic neurons. Exp. Physiol. 97:111180–85
    [Google Scholar]
  16. Butchers PR, Vardey CJ, Johnson M 1991. Salmeterol: a potent and long-acting inhibitor of inflammatory mediator release from human lung. Br. J. Pharmacol. 104:3672–76
    [Google Scholar]
  17. Camell CD, Sander J, Spadaro O, Lee A, Nguyen KY et al. 2017. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 550:7674119–23
    [Google Scholar]
  18. Canning BJ, Mori N, Mazzone SB. 2006. Vagal afferent nerves regulating the cough reflex. Respir. Physiol. Neurobiol. 152:3223–42
    [Google Scholar]
  19. Capurso L, Friedmann CA, Parks AG. 1968. Adrenergic fibres in the human intestine. Gut 9:6678–82
    [Google Scholar]
  20. Cardoso F, Klein Wolterink RGJ, Godinho-Silva C, Domingues RG, Ribeiro H et al. 2021. Neuro-mesenchymal units control ILC2 and obesity via a brain-adipose circuit. Nature 597:410–14
    [Google Scholar]
  21. Cardoso V, Chesné J, Ribeiro H, García-Cassani B, Carvalho T et al. 2017. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549:7671277–81
    [Google Scholar]
  22. Carr MJ, Undem BJ. 2003. Bronchopulmonary afferent nerves. Respirology 8:3291–301
    [Google Scholar]
  23. Chang RB, Strochlic DE, Williams EK, Umans BD, Liberles SD. 2015. Vagal sensory neuron subtypes that differentially control breathing. Cell 161:3622–33
    [Google Scholar]
  24. Chesné J, Cardoso V, Veiga-Fernandes H. 2019. Neuro-immune regulation of mucosal physiology. Mucosal Immunol 12:10–20
    [Google Scholar]
  25. Chiu IM, Heesters BA, Ghasemlou N, Von Hehn CA, Zhao F et al. 2013. Bacteria activate sensory neurons that modulate pain and inflammation. Nature 501:746552–57
    [Google Scholar]
  26. Chiu IM, von Hehn CA, Woolf CJ. 2012. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat. Neurosci. 15:81063–67
    [Google Scholar]
  27. Chu C, Artis D, Chiu IM. 2020. Neuro-immune interactions in the tissues. Immunity 52:3464–74
    [Google Scholar]
  28. Chu C, Parkhurst CN, Zhang W, Zhou L, Yano H et al. 2021. The ChAT-acetylcholine pathway promotes group 2 innate lymphoid cell responses and anti-helminth immunity. Sci. Immunol. 6:57eabe3218
    [Google Scholar]
  29. Cohen JA, Edwards TN, Liu AW, Hirai T, Jones MR et al. 2019. Cutaneous TRPV1+ neurons trigger protective innate type 17 anticipatory immunity. Cell 178:4919–32.e14
    [Google Scholar]
  30. Coleridge HM, Coleridge JCG. 2011. Reflexes evoked from tracheobronchial tree and lungs. Comprehensive Physiology, ed. R Terjung 395–429 Rockville, MD: Am. Physiol. Soc.
    [Google Scholar]
  31. Cook AD, Christensen AD, Tewari D, McMahon SB, Hamilton JA. 2018. Immune cytokines and their receptors in inflammatory pain. Trends Immunol 39:3240–55
    [Google Scholar]
  32. Cyphert JM, Kovarova M, Allen IC, Hartney JM, Murphy DL et al. 2009. Cooperation between mast cells and neurons is essential for antigen-mediated bronchoconstriction. J. Immunol. 182:127430–39
    [Google Scholar]
  33. Dalli J, Colas RA, Arnardottir H, Serhan CN. 2017. Vagal regulation of group 3 innate lymphoid cells and the immunoresolvent PCTR1 controls infection resolution. Immunity 46:192–105
    [Google Scholar]
  34. de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ et al. 2005. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat. Immunol. 6:8844–51
    [Google Scholar]
  35. Di Giovangiulio M, Verheijden S, Bosmans G, Stakenborg N, Boeckxstaens GE, Matteoli G. 2015. The neuromodulation of the intestinal immune system and its relevance in inflammatory bowel disease. Front. Immunol. 6:590
    [Google Scholar]
  36. Diogenes A, Ferraz CCR, Akopian AN, Henry MA, Hargreaves KM. 2011. LPS sensitizes TRPV1 via activation of TLR4 in trigeminal sensory neurons. J. Dent. Res. 90:6759–64
    [Google Scholar]
  37. Felten DL, Felten SY. 1987. Immune interactions with specific neural structures. Brain Behav. Immun. 1:4279–83
    [Google Scholar]
  38. Fischer A, Canning BJ, Undem BJ, Kummer W. 1998. Evidence for an esophageal origin of VIP-IR and NO synthase-IR nerves innervating the guinea pig trachealis: a retrograde neuronal tracing and immunohistochemical analysis. J. Comp. Neurol. 394:3326–34
    [Google Scholar]
  39. Fonseca-Pereira D, Arroz-Madeira S, Rodrigues-Campos M, Barbosa IAM, Domingues RG et al. 2014. The neurotrophic factor receptor RET drives haematopoietic stem cell survival and function. Nature 514:752098–101
    [Google Scholar]
  40. Fu Y-Y, Peng S-J, Lin H-Y, Pasricha PJ, Tang S-C. 2013. 3-D imaging and illustration of mouse intestinal neurovascular complex. Am. J. Physiol. Gastrointest. Liver Physiol. 304:1G1–11
    [Google Scholar]
  41. Furness JB. 2000. Types of neurons in the enteric nervous system. J. Auton. Nerv. Syst. 81:1–387–96
    [Google Scholar]
  42. Furness JB, Callaghan BP, Rivera LR, Cho H-J. 2014. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv. Exp. Med. Biol. 817:39–71
    [Google Scholar]
  43. Gabanyi I, Muller PA, Feighery L, Oliveira TY, Costa-Pinto FA, Mucida D. 2016. Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 164:3378–91
    [Google Scholar]
  44. Galle-Treger L, Suzuki Y, Patel N, Sankaranarayanan I, Aron JL et al. 2016. Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity. Nat. Commun. 7:13202
    [Google Scholar]
  45. Gao X, Zhang D, Xu C, Li H, Caron KM, Frenette PS. 2021. Nociceptive nerves regulate haematopoietic stem cell mobilization. Nature 589:7843591–96
    [Google Scholar]
  46. Godinho-Silva C, Cardoso F, Veiga-Fernandes H. 2019. Neuro-immune cell units: a new paradigm in physiology. Annu. Rev. Immunol. 37:19–46
    [Google Scholar]
  47. Green DP, Limjunyawong N, Gour N, Pundir P, Dong X. 2019. A mast-cell-specific receptor mediates neurogenic inflammation and pain. Neuron 101:3412–20.e3
    [Google Scholar]
  48. Grundy L, Erickson A, Brierley SM. 2019. Visceral pain. Annu. Rev. Physiol. 81:261–84
    [Google Scholar]
  49. Hammad H, Lambrecht BN. 2015. Barrier epithelial cells and the control of type 2 immunity. Immunity 43:129–40
    [Google Scholar]
  50. Hanoun M, Zhang D, Mizoguchi T, Pinho S, Pierce H et al. 2014. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell 15:3365–75
    [Google Scholar]
  51. Harzenetter MD, Novotny AR, Gais P, Molina CA, Altmayr F, Holzmann B. 2007. Negative regulation of TLR responses by the neuropeptide CGRP is mediated by the transcriptional repressor ICER. J. Immunol. 179:1607–15
    [Google Scholar]
  52. Hoeffel G, Debroas G, Roger A, Rossignol R, Gouilly J et al. 2021. Sensory neuron-derived TAFA4 promotes macrophage tissue repair functions. Nature 594:786194–99
    [Google Scholar]
  53. Huang S, Ziegler CGK, Austin J, Mannoun N, Vukovic M et al. 2021. Lymph nodes are innervated by a unique population of sensory neurons with immunomodulatory potential. Cell 184:2441–59.e25
    [Google Scholar]
  54. Huh JR, Veiga-Fernandes H. 2020. Neuroimmune circuits in inter-organ communication. Nat. Rev. Immunol. 20:4217–28
    [Google Scholar]
  55. Ibiza S, García-Cassani B, Ribeiro H, Carvalho T, Almeida L et al. 2016. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature 535:7612440–43
    [Google Scholar]
  56. Ji H, Rabbi MF, Labis B, Pavlov VA, Tracey KJ, Ghia JE. 2014. Central cholinergic activation of a vagus nerve-to-spleen circuit alleviates experimental colitis. Mucosal Immunol 7:2335–47
    [Google Scholar]
  57. Kageyama-Yahara N, Suehiro Y, Yamamoto T, Kadowaki M. 2008. IgE-induced degranulation of mucosal mast cells is negatively regulated via nicotinic acetylcholine receptors. Biochem. Biophys. Res. Commun. 377:1321–25
    [Google Scholar]
  58. Kashem SW, Riedl MS, Yao C, Honda CN, Vulchanova L, Kaplan DH. 2015. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity 43:3515–26
    [Google Scholar]
  59. Kim CF, Moalem-Taylor G. 2011. Interleukin-17 contributes to neuroinflammation and neuropathic pain following peripheral nerve injury in mice. J. Pain 12:3370–83
    [Google Scholar]
  60. Klose CSN, Mahlakõiv T, Moeller JB, Rankin LC, Flamar A-L et al. 2017. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature 549:282–86
    [Google Scholar]
  61. Klose CSN, Veiga-Fernandes H. 2021. Neuroimmune interactions in peripheral tissues. Eur. J. Immunol. 51:71602–14
    [Google Scholar]
  62. Kowalski ML, Didier A, Lundgren JD, Igarashi Y, Kaliner MA. 1997. Role of sensory innervation and mast cells in neurogenic plasma protein exudation into the airway lumen. Respirology 2:4267–74
    [Google Scholar]
  63. Kraus A, Buckley KM, Salinas I 2021. Sensing the world and its dangers: an evolutionary perspective in neuroimmunology. eLife 10:e66706
    [Google Scholar]
  64. Krystel-Whittemore M, Dileepan KN, Wood JG. 2015. Mast cell: a multi-functional master cell. Front. Immunol. 6:620
    [Google Scholar]
  65. Kulkarni S, Ganz J, Bayrer J, Becker L, Bogunovic M, Rao M. 2018. Advances in enteric neurobiology: the “brain” in the gut in health and disease. J. Neurosci. 38:449346–54
    [Google Scholar]
  66. Kummer W, Fischer A, Kurkowski R, Heym C. 1992. The sensory and sympathetic innervation of guinea-pig lung and trachea as studied by retrograde neuronal tracing and double-labelling immunohistochemistry. Neuroscience 49:3715–37
    [Google Scholar]
  67. Lai NY, Musser MA, Pinho-Ribeiro FA, Baral P, Jacobson A et al. 2020. Gut-innervating nociceptor neurons regulate Peyer's patch microfold cells and SFB levels to mediate salmonella host defense. Cell 180:133–49.e22
    [Google Scholar]
  68. Lamhamedi-Cherradi S-E, Martin RE, Ito T, Kheradmand F, Corry DB et al. 2008. Fungal proteases induce Th2 polarization through limited dendritic cell maturation and reduced production of IL-12. J. Immunol. 180:96000–9
    [Google Scholar]
  69. Martelli D, Yao ST, McKinley MJ, McAllen RM. 2014. Reflex control of inflammation by sympathetic nerves, not the vagus. J. Physiol. 592:71677–86
    [Google Scholar]
  70. Maruyama K, Takayama Y, Sugisawa E, Yamanoi Y, Yokawa T et al. 2018. The ATP transporter VNUT mediates induction of Dectin-1-triggered Candida nociception. iScience 6:306–18
    [Google Scholar]
  71. Maryanovich M, Zahalka AH, Pierce H, Pinho S, Nakahara F et al. 2018. Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat. Med. 24:6782–91
    [Google Scholar]
  72. Masini E, Fantozzi R, Conti A, Blandina P, Brunelleschi S, Mannaioni PF. 1985. Mast cell heterogeneity in response to cholinergic stimulation. Int. Arch. Allergy Appl. Immunol. 77:1–2184–85
    [Google Scholar]
  73. Matheis F, Muller PA, Graves CL, Gabanyi I, Kerner ZJ et al. 2020. Adrenergic signaling in muscularis macrophages limits infection-induced neuronal loss. Cell 180:164–78.e16
    [Google Scholar]
  74. Matteoli G, Gomez-Pinilla PJ, Nemethova A, Di Giovangiulio M, Cailotto C et al. 2014. A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut 63:6938–48
    [Google Scholar]
  75. McGovern AE, Mazzone SB. 2010. Characterization of the vagal motor neurons projecting to the Guinea pig airways and esophagus. Front. Neurol. 1:153
    [Google Scholar]
  76. McNeil BD, Pundir P, Meeker S, Han L, Undem BJ et al. 2015. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 519:7542237–41
    [Google Scholar]
  77. Méndez-Ferrer S, Lucas D, Battista M, Frenette PS. 2008. Haematopoietic stem cell release is regulated by circadian oscillations. Nature 452:7186442–47
    [Google Scholar]
  78. Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD et al. 2010. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:7308829–34
    [Google Scholar]
  79. Meseguer V, Alpizar YA, Luis E, Tajada S, Denlinger B et al. 2014. TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nat. Commun. 5:3125
    [Google Scholar]
  80. Mishra NC, Rir-sima-ah J, Boyd RT, Singh SP, Gundavarapu S et al. 2010. Nicotine inhibits FcεRI-induced cysteinyl leukotrienes and cytokine production without affecting mast cell degranulation through α7/α9/α10-nicotinic receptors. J. Immunol. 185:1588–96
    [Google Scholar]
  81. Moriyama S, Brestoff JR, Flamar A-L, Moeller JB, Klose CSN et al. 2018. β2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses. Science 359:63791056–61
    [Google Scholar]
  82. Muller PA, Koscsó B, Rajani GM, Stevanovic K, Berres M-L et al. 2014. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158:2300–13
    [Google Scholar]
  83. Nutma E, Willison H, Martino G, Amor S. 2019. Neuroimmunology—the past, present and future. Clin. Exp. Immunol. 197:3278–93
    [Google Scholar]
  84. Oke SL, Tracey KJ. 2009. The inflammatory reflex and the role of complementary and alternative medical therapies. Ann. N. Y. Acad. Sci. 1172:172–80
    [Google Scholar]
  85. Palm NW, Rosenstein RK, Yu S, Schenten DD, Florsheim E, Medzhitov R. 2013. Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective immunity. Immunity 39:5976–85
    [Google Scholar]
  86. Park MH, Jin HK, Min W-K, Lee WW, Lee JE et al. 2015. Neuropeptide Y regulates the hematopoietic stem cell microenvironment and prevents nerve injury in the bone marrow. EMBO J 34:121648–60
    [Google Scholar]
  87. Patel A, Harker N, Moreira-Santos L, Ferreira M, Alden K et al. 2012. Differential RET signaling pathways drive development of the enteric lymphoid and nervous systems. Sci. Signal. 5:235ra55
    [Google Scholar]
  88. Pavlov VA, Tracey KJ. 2017. Neural regulation of immunity: molecular mechanisms and clinical translation. Nat. Neurosci. 20:2156–66
    [Google Scholar]
  89. Pavlov VA, Wang H, Czura CJ, Friedman SG, Tracey KJ. 2003. The cholinergic anti-inflammatory pathway: a missing link in neuroimmunomodulation. Mol. Med. 9:5–8125–34
    [Google Scholar]
  90. Perner C, Flayer CH, Zhu X, Aderhold PA, Dewan ZNA et al. 2020. Substance P release by sensory neurons triggers dendritic cell migration and initiates the type-2 immune response to allergens. Immunity 53:51063–77.e7
    [Google Scholar]
  91. Phillips RJ, Rhodes BS, Powley TL. 2006. Effects of age on sympathetic innervation of the myenteric plexus and gastrointestinal smooth muscle of Fischer 344 rats. Anat. Embryol. 211:6673–83
    [Google Scholar]
  92. Pierce H, Zhang D, Magnon C, Lucas D, Christin JR et al. 2017. Cholinergic signals from the CNS regulate G-CSF-mediated HSC mobilization from bone marrow via a glucocorticoid signaling relay. Cell Stem Cell 20:5648–58.e4
    [Google Scholar]
  93. Pinho-Ribeiro FA, Baddal B, Haarsma R, O'Seaghdha M, Yang NJ et al. 2018. Blocking neuronal signaling to immune cells treats Streptococcal invasive infection. Cell 173:51083–97.e22
    [Google Scholar]
  94. Pirzgalska RM, Seixas E, Seidman JS, Link VM, Sánchez NM et al. 2017. Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat. Med 23:111309–18
    [Google Scholar]
  95. Porter P, Susarla SC, Polikepahad S, Qian Y, Hampton J et al. 2009. Link between allergic asthma and airway mucosal infection suggested by proteinase-secreting household fungi. Mucosal Immunol 2:6504–17
    [Google Scholar]
  96. Riol-Blanco L, Ordovas-Montanes J, Perro M, Naval E, Thiriot A et al. 2014. Nociceptive sensory neurons drive interleukin-23-mediated psoriasiform skin inflammation. Nature 510:7503157–61
    [Google Scholar]
  97. Roberts LB, Schnoeller C, Berkachy R, Darby M, Pillaye J et al. 2021. Acetylcholine production by group 2 innate lymphoid cells promotes mucosal immunity to helminths. Sci. Immunol. 6:57eabd0359
    [Google Scholar]
  98. Schiller M, Ben-Shaanan TL, Rolls A 2021. Neuronal regulation of immunity: Why, how and where?. Nat. Rev. Immunol. 21:120–36
    [Google Scholar]
  99. Serhan N, Basso L, Sibilano R, Petitfils C, Meixiong J et al. 2019. House dust mites activate nociceptor-mast cell clusters to drive type 2 skin inflammation. Nat. Immunol. 20:111435–43
    [Google Scholar]
  100. Shurin MR, Shurin GV, Zlotnikov SB, Bunimovich YL. 2020. The neuroimmune axis in the tumor microenvironment. J. Immunol. 204:2280–85
    [Google Scholar]
  101. Sokol CL, Barton GM, Farr AG, Medzhitov R. 2008. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat. Immunol. 9:3310–18
    [Google Scholar]
  102. Talbot S, Abdulnour R-EE, Burkett PR, Lee S, Cronin SJF et al. 2015. Silencing nociceptor neurons reduces allergic airway inflammation. Neuron 87:2341–55
    [Google Scholar]
  103. Tamari M, Ver Heul AM, Kim BS 2021. Immunosensation: neuroimmune cross talk in the skin. Annu. Rev. Immunol. 39:369–93
    [Google Scholar]
  104. Tracey KJ. 2002. The inflammatory reflex. Nature 420:6917853–59
    [Google Scholar]
  105. Tränkner D, Hahne N, Sugino K, Hoon MA, Zuker C. 2014. Population of sensory neurons essential for asthmatic hyperreactivity of inflamed airways. PNAS 111:3111515–20
    [Google Scholar]
  106. Undem BJ, Riccio MM, Weinreich D, Ellis JL, Myers AC. 1995. Neurophysiology of mast cell-nerve interactions in the airways. Int. Arch. Allergy Immunol. 107:1–3199–201
    [Google Scholar]
  107. van Diest SA, Stanisor OI, Boeckxstaens GE, de Jonge WJ, van den Wijngaard RM. 2012. Relevance of mast cell-nerve interactions in intestinal nociception. Biochim. Biophys. Acta Mol. Basis Dis. 1822:174–84
    [Google Scholar]
  108. Van Dyken SJ, Locksley RM. 2018. Chitins and chitinase activity in airway diseases. J. Allergy Clin. Immunol. 142:2364–69
    [Google Scholar]
  109. Veiga-Fernandes H, Artis D. 2018. Neuronal-immune system cross-talk in homeostasis. Science 359:63831465–66
    [Google Scholar]
  110. Veiga-Fernandes H, Coles MC, Foster KE, Patel A, Williams A et al. 2007. Tyrosine kinase receptor RET is a key regulator of Peyer's patch organogenesis. Nature 446:7135547–51
    [Google Scholar]
  111. Veiga-Fernandes H, Pachnis V. 2017. Neuroimmune regulation during intestinal development and homeostasis. Nat. Immunol. 18:116–22
    [Google Scholar]
  112. Wallrapp A, Riesenfeld SJ, Burkett PR, Abdulnour R-EE, Nyman J et al. 2017. The neuropeptide NMU amplifies ILC2-driven allergic lung inflammation. Nature 549:7672351–56
    [Google Scholar]
  113. Walters N, Trunkle T, Sura M, Pascual DW. 2005. Enhanced immunoglobulin A response and protection against Salmonella enterica serovar typhimurium in the absence of the substance P receptor. Infect. Immun. 73:1317–24
    [Google Scholar]
  114. Warr MR, Pietras EM, Passegué E. 2011. Mechanisms controlling hematopoietic stem cell functions during normal hematopoiesis and hematological malignancies. Wiley Interdiscip. Rev. Syst. Biol. Med. 3:6681–701
    [Google Scholar]
  115. Webster JI, Tonelli L, Sternberg EM. 2002. Neuroendocrine regulation of immunity. Annu. Rev. Immunol. 20:125–63
    [Google Scholar]
  116. Weigand LA, Myers AC, Meeker S, Undem BJ. 2009. Mast cell-cholinergic nerve interaction in mouse airways. J. Physiol. 587:Pt. 133355–62
    [Google Scholar]
  117. Widdicombe J. 2001. Airway receptors. Respir. Physiol. 125:1–23–15
    [Google Scholar]
  118. Williams RM, Berthoud H-R, Stead RH. 1997. Vagal afferent nerve fibres contact mast cells in rat small intestinal mucosa. Neuroimmunomodulation 4:5–6266–70
    [Google Scholar]
  119. Wolf Y, Boura-Halfon S, Cortese N, Haimon Z, Sar Shalom H et al. 2017. Brown-adipose-tissue macrophages control tissue innervation and homeostatic energy expenditure. Nat. Immunol. 18:6665–74
    [Google Scholar]
  120. Xia C-M, Colomb DG, Akbarali HI, Qiao L-Y. 2011. Prolonged sympathetic innervation of sensory neurons in rat thoracolumbar dorsal root ganglia during chronic colitis. Neurogastroenterol. Motil. 23:8801–e339
    [Google Scholar]
  121. Xu Z-Z, Kim YH, Bang S, Zhang Y, Berta T et al. 2015. Inhibition of mechanical allodynia in neuropathic pain by TLR5-mediated A-fiber blockade. Nat. Med. 21:111326–31
    [Google Scholar]
  122. Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H et al. 2011. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147:51146–58
    [Google Scholar]
  123. Yang X, Zhao C, Gao Z, Su X. 2014. A novel regulator of lung inflammation and immunity: pulmonary parasympathetic inflammatory reflex. QJM 107:10789–92
    [Google Scholar]
  124. Zanos TP, Silverman HA, Levy T, Tsaava T, Battinelli E et al. 2018. Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity. PNAS 115:21E4843–52
    [Google Scholar]
  125. Zhang S, Edwards TN, Chaudhri VK, Wu J, Cohen JA et al. 2021. Nonpeptidergic neurons suppress mast cells via glutamate to maintain skin homeostasis. Cell 184:82151–66.e16
    [Google Scholar]
  126. Zhang X, Lei B, Yuan Y, Zhang L, Hu L et al. 2020. Brain control of humoral immune responses amenable to behavioural modulation. Nature 581:7807204–8
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-111020-105359
Loading
/content/journals/10.1146/annurev-neuro-111020-105359
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error