1932

Abstract

Virtually all cell types have the same DNA, yet each type exhibits its own cell-specific pattern of gene expression. During the brief period of mitosis, the chromosomes exhibit changes in protein composition and modifications, a marked condensation, and a consequent reduction in transcription. Yet as cells exit mitosis, they reactivate their cell-specific programs with high fidelity. Initially, the field focused on the subset of transcription factors that are selectively retained in, and hence bookmark, chromatin in mitosis. However, recent studies show that many transcription factors can be retained in mitotic chromatin and that, surprisingly, such retention can be due to nonspecific chromatin binding. Here, we review the latest studies focusing on low-level transcription via promoters, rather than enhancers, as contributing to mitotic memory, as well as new insights into chromosome structure dynamics, histone modifications, cell cycle signaling, and nuclear envelope proteins that together ensure the fidelity of gene expression through a round of mitosis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-121321-094603
2022-08-31
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/genom/23/1/annurev-genom-121321-094603.html?itemId=/content/journals/10.1146/annurev-genom-121321-094603&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Abramo K, Valton AL, Venev SV, Ozadam H, Fox AN, Dekker J. 2019. A chromosome folding intermediate at the condensin-to-cohesin transition during telophase. Nat. Cell Biol. 21:1393–402
    [Google Scholar]
  2. 2.
    Akoulitchev S, Reinberg D. 1998. The molecular mechanism of mitotic inhibition of TFIIH is mediated by phosphorylation of CDK7. Genes Dev 12:3541–50
    [Google Scholar]
  3. 3.
    Alexander JM, Hota SK, He D, Thomas S, Ho L et al. 2015. Brg1 modulates enhancer activation in mesoderm lineage commitment. Development 142:1418–30
    [Google Scholar]
  4. 4.
    Alver BH, Kim KH, Lu P, Wang X, Manchester HE et al. 2017. The SWI/SNF chromatin remodelling complex is required for maintenance of lineage specific enhancers. Nat. Commun. 8:14648
    [Google Scholar]
  5. 5.
    Asenjo HG, Gallardo A, López-Onieva L, Tejada I, Martorell-Marugán J et al. 2020. Polycomb regulation is coupled to cell cycle transition in pluripotent stem cells. Sci. Adv. 6:eaay4768
    [Google Scholar]
  6. 6.
    Becker JS, McCarthy RL, Sidoli S, Donahue G, Kaeding KE et al. 2017. Genomic and proteomic resolution of heterochromatin and its restriction of alternate fate genes. Mol. Cell 68:1023–37.e15
    [Google Scholar]
  7. 7.
    Blethrow JD, Glavy JS, Morgan DO, Shokat KM. 2008. Covalent capture of kinase-specific phosphopeptides reveals Cdk1-cyclin B substrates. PNAS 105:1442–47
    [Google Scholar]
  8. 8.
    Blobel GA, Kadauke S, Wang E, Lau AW, Zuber J et al. 2009. A reconfigured pattern of MLL occupancy within mitotic chromatin promotes rapid transcriptional reactivation following mitotic exit. Mol. Cell 36:970–83
    [Google Scholar]
  9. 9.
    Bonev B, Mendelson Cohen N, Szabo Q, Fritsch L, Papadopoulos GL et al. 2017. Multiscale 3D genome rewiring during mouse neural development. Cell 171:557–72.e24
    [Google Scholar]
  10. 10.
    Boulay G, Sandoval GJ, Riggi N, Iyer S, Buisson R et al. 2017. Cancer-specific retargeting of BAF complexes by a prion-like domain. Cell 171:163–78.e19
    [Google Scholar]
  11. 11.
    Branon TC, Bosch JA, Sanchez AD, Udeshi ND, Svinkina T et al. 2018. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36:880–87
    [Google Scholar]
  12. 12.
    Buchwalter A, Kaneshiro JM, Hetzer MW. 2019. Coaching from the sidelines: the nuclear periphery in genome regulation. Nat. Rev. Genet. 20:39–50
    [Google Scholar]
  13. 13.
    Caravaca JM, Donahue G, Becker JS, He X, Vinson C, Zaret KS. 2013. Bookmarking by specific and nonspecific binding of FoxA1 pioneer factor to mitotic chromosomes. Genes Dev 27:251–60
    [Google Scholar]
  14. 14.
    Chen CC, Bowers S, Lipinszki Z, Palladino J, Trusiak S et al. 2015. Establishment of centromeric chromatin by the CENP-A assembly factor CAL1 requires FACT-mediated transcription. Dev. Cell 34:73–84
    [Google Scholar]
  15. 15.
    Chen D, Hinkley CS, Henry RW, Huang S. 2002. TBP dynamics in living human cells: constitutive association of TBP with mitotic chromosomes. Mol. Biol. Cell 13:276–84
    [Google Scholar]
  16. 16.
    Chen SY, Osimiri LC, Chevalier M, Bugaj LJ, Nguyen TH et al. 2020. Optogenetic control reveals differential promoter interpretation of transcription factor nuclear translocation dynamics. Cell Syst 11:336–53.e24
    [Google Scholar]
  17. 17.
    Cho KF, Branon TC, Udeshi ND, Myers SA, Carr SA, Ting AY. 2020. Proximity labeling in mammalian cells with TurboID and split-TurboID. Nat. Protoc. 15:3971–99
    [Google Scholar]
  18. 18.
    Christova R, Oelgeschlager T. 2002. Association of human TFIID-promoter complexes with silenced mitotic chromatin in vivo. Nat. Cell Biol. 4:79–82
    [Google Scholar]
  19. 19.
    Chu CS, Hsu PH, Lo PW, Scheer E, Tora L et al. 2011. Protein kinase A-mediated serine 35 phosphorylation dissociates histone H1.4 from mitotic chromosome. J. Biol. Chem. 286:35843–51
    [Google Scholar]
  20. 20.
    Creamer KM, Kolpa HJ, Lawrence JB. 2021. Nascent RNA scaffolds contribute to chromosome territory architecture and counter chromatin compaction. Mol. Cell 81:3509–25.e5
    [Google Scholar]
  21. 21.
    Daujat S, Zeissler U, Waldmann T, Happel N, Schneider R. 2005. HP1 binds specifically to Lys26-methylated histone H1.4, whereas simultaneous Ser27 phosphorylation blocks HP1 binding. J. Biol. Chem. 280:38090–95
    [Google Scholar]
  22. 22.
    Dey A, Nishiyama A, Karpova T, McNally J, Ozato K. 2009. Brd4 marks select genes on mitotic chromatin and directs postmitotic transcription. Mol. Biol. Cell 20:4899–909
    [Google Scholar]
  23. 23.
    Di Giammartino DC, Polyzos A, Apostolou E. 2020. Transcription factors: building hubs in the 3D space. Cell Cycle 19:2395–410
    [Google Scholar]
  24. 24.
    Dileep V, Ay F, Sima J, Vera DL, Noble WS, Gilbert DM. 2015. Topologically associating domains and their long-range contacts are established during early G1 coincident with the establishment of the replication-timing program. Genome Res 25:1104–13
    [Google Scholar]
  25. 25.
    Dixon G, Pan H, Yang D, Rosen BP, Jashari T et al. 2021. QSER1 protects DNA methylation valleys from de novo methylation. Science 372:eabd0875
    [Google Scholar]
  26. 26.
    Djeghloul D, Patel B, Kramer H, Dimond A, Whilding C et al. 2020. Identifying proteins bound to native mitotic ESC chromosomes reveals chromatin repressors are important for compaction. Nat. Commun. 11:4118
    [Google Scholar]
  27. 27.
    Dou Y, Mizzen CA, Abrams M, Allis CD, Gorovsky MA. 1999. Phosphorylation of linker histone H1 regulates gene expression in vivo by mimicking H1 removal. Mol. Cell 4:641–47
    [Google Scholar]
  28. 28.
    Farrelly O, Suzuki-Horiuchi Y, Brewster M, Kuri P, Huang S et al. 2021. Two-photon live imaging of single corneal stem cells reveals compartmentalized organization of the limbal niche. Cell Stem Cell 28:1233–47.e4
    [Google Scholar]
  29. 29.
    Favreau C, Worman HJ, Wozniak RW, Frappier T, Courvalin JC. 1996. Cell cycle-dependent phosphorylation of nucleoporins and nuclear pore membrane protein Gp210. Biochemistry 35:8035–44
    [Google Scholar]
  30. 30.
    Festuccia N, Dubois A, Vandormael-Pournin S, Gallego Tejeda E, Mouren A et al. 2016. Mitotic binding of Esrrb marks key regulatory regions of the pluripotency network. Nat. Cell Biol. 18:1139–48
    [Google Scholar]
  31. 31.
    Festuccia N, Owens N, Papadopoulou T, Gonzalez I, Tachtsidi A et al. 2019. Transcription factor activity and nucleosome organization in mitosis. Genome Res 29:250–60
    [Google Scholar]
  32. 32.
    Finn EH, Pegoraro G, Brandão HB, Valton AL, Oomen ME et al. 2019. Extensive heterogeneity and intrinsic variation in spatial genome organization. Cell 176:1502–15.e10
    [Google Scholar]
  33. 33.
    Fischle W, Tseng BS, Dormann HL, Ueberheide BM, Garcia BA et al. 2005. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438:1116–22
    [Google Scholar]
  34. 34.
    Gerace L, Blobel G. 1980. The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell 19:277–87
    [Google Scholar]
  35. 35.
    Gibcus JH, Samejima K, Goloborodko A, Samejima I, Naumova N et al. 2018. A pathway for mitotic chromosome formation. Science 359:eaao6135
    [Google Scholar]
  36. 36.
    Ginno PA, Burger L, Seebacher J, Iesmantavicius V, Schubeler D. 2018. Cell cycle-resolved chromatin proteomics reveals the extent of mitotic preservation of the genomic regulatory landscape. Nat. Commun. 9:4048
    [Google Scholar]
  37. 37.
    Glavy JS, Krutchinsky AN, Cristea IM, Berke IC, Boehmer T et al. 2007. Cell-cycle-dependent phosphorylation of the nuclear pore Nup107–160 subcomplex. PNAS 104:3811–16
    [Google Scholar]
  38. 38.
    Gonzalez I, Molliex A, Navarro P. 2021. Mitotic memories of gene activity. Curr. Opin. Cell Biol. 69:41–47
    [Google Scholar]
  39. 39.
    Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ et al. 2014. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159:1327–40
    [Google Scholar]
  40. 40.
    Guo J, Turek ME, Price DH. 2014. Regulation of RNA polymerase II termination by phosphorylation of Gdown1. J. Biol. Chem. 289:12657–65
    [Google Scholar]
  41. 41.
    Guttinger S, Laurell E, Kutay U. 2009. Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat. Rev. Mol. Cell Biol. 10:178–91
    [Google Scholar]
  42. 42.
    Hall LL, Carone DM, Gomez AV, Kolpa HJ, Byron M et al. 2014. Stable C0T-1 repeat RNA is abundant and is associated with euchromatic interphase chromosomes. Cell 156:907–19
    [Google Scholar]
  43. 43.
    Heald R, McKeon F. 1990. Mutations of phosphorylation sites in lamin A that prevent nuclear lamina disassembly in mitosis. Cell 61:579–89
    [Google Scholar]
  44. 44.
    Heinz S, Romanoski CE, Benner C, Glass CK. 2015. The selection and function of cell type-specific enhancers. Nat. Rev. Mol. Cell Biol. 16:144–54
    [Google Scholar]
  45. 45.
    Henninger JE, Oksuz O, Shrinivas K, Sagi I, LeRoy G et al. 2021. RNA-mediated feedback control of transcriptional condensates. Cell 184:207–25.e24
    [Google Scholar]
  46. 46.
    Hergeth SP, Dundr M, Tropberger P, Zee BM, Garcia BA et al. 2011. Isoform-specific phosphorylation of human linker histone H1.4 in mitosis by the kinase Aurora B. J. Cell Sci. 124:1623–28
    [Google Scholar]
  47. 47.
    Hintermair C, Voss K, Forne I, Heidemann M, Flatley A et al. 2016. Specific threonine-4 phosphorylation and function of RNA polymerase II CTD during M phase progression. Sci. Rep. 6:27401
    [Google Scholar]
  48. 48.
    Hirota T, Lipp JJ, Toh BH, Peters JM. 2005. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438:1176–80
    [Google Scholar]
  49. 49.
    Hsieh TS, Cattoglio C, Slobodyanyuk E, Hansen AS, Rando OJ et al. 2020. Resolving the 3D landscape of transcription-linked mammalian chromatin folding. Mol. Cell 78:539–53.e8
    [Google Scholar]
  50. 50.
    Hsiung CC, Bartman CR, Huang P, Ginart P, Stonestrom AJ et al. 2016. A hyperactive transcriptional state marks genome reactivation at the mitosis-G1 transition. Genes Dev 30:1423–39
    [Google Scholar]
  51. 51.
    Hsiung CC, Morrissey CS, Udugama M, Frank CL, Keller CA et al. 2015. Genome accessibility is widely preserved and locally modulated during mitosis. Genome Res 25:213–25
    [Google Scholar]
  52. 52.
    Huch M, Dorrell C, Boj SF, van Es JH, Li VS et al. 2013. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494:247–50
    [Google Scholar]
  53. 53.
    Huseyin MK, Klose RJ. 2021. Live-cell single particle tracking of PRC1 reveals a highly dynamic system with low target site occupancy. Nat. Commun. 12:887
    [Google Scholar]
  54. 54.
    Ikegami K, Secchia S, Almakki O, Lieb JD, Moskowitz IP. 2020. Phosphorylated lamin A/C in the nuclear interior binds active enhancers associated with abnormal transcription in progeria. Dev. Cell 52:699–713.e11
    [Google Scholar]
  55. 55.
    Javasky E, Shamir I, Gandhi S, Egri S, Sandler O et al. 2018. Study of mitotic chromatin supports a model of bookmarking by histone modifications and reveals nucleosome deposition patterns. Genome Res 28:1455–66
    [Google Scholar]
  56. 56.
    Jiang L, Huang Y, Deng M, Liu T, Lai W, Ye X 2013. Polo-like kinase 1 inhibits the activity of positive transcription elongation factor of RNA Pol II b (P-TEFb). PLOS ONE 8:e72289
    [Google Scholar]
  57. 57.
    Jiang Y, Huang J, Lun K, Li B, Zheng H et al. 2020. Genome-wide analyses of chromatin interactions after the loss of Pol I, Pol II, and Pol III. Genome Biol 21:158
    [Google Scholar]
  58. 58.
    Jiang Y, Liu M, Spencer CA, Price DH. 2004. Involvement of transcription termination factor 2 in mitotic repression of transcription elongation. Mol. Cell 14:375–85
    [Google Scholar]
  59. 59.
    Kadauke S, Udugama MI, Pawlicki JM, Achtman JC, Jain DP et al. 2012. Tissue-specific mitotic bookmarking by hematopoietic transcription factor GATA1. Cell 150:725–37
    [Google Scholar]
  60. 60.
    Kang H, Shokhirev MN, Xu Z, Chandran S, Dixon JR, Hetzer MW. 2020. Dynamic regulation of histone modifications and long-range chromosomal interactions during postmitotic transcriptional reactivation. Genes Dev 34:913–30
    [Google Scholar]
  61. 61.
    Kelly AE, Ghenoiu C, Xue JZ, Zierhut C, Kimura H, Funabiki H. 2010. Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science 330:235–39
    [Google Scholar]
  62. 62.
    Kim JM, Visanpattanasin P, Jou V, Liu S, Tang X et al. 2021. Single-molecule imaging of chromatin remodelers reveals role of ATPase in promoting fast kinetics of target search and dissociation from chromatin. eLife 10:e69387
    [Google Scholar]
  63. 63.
    Kind J, Pagie L, Ortabozkoyun H, Boyle S, de Vries SS et al. 2013. Single-cell dynamics of genome-nuclear lamina interactions. Cell 153:178–92
    [Google Scholar]
  64. 64.
    Kochin V, Shimi T, Torvaldson E, Adam SA, Goldman A et al. 2014. Interphase phosphorylation of lamin A. J. Cell Sci. 127:2683–96
    [Google Scholar]
  65. 65.
    Koike H, Iwasawa K, Ouchi R, Maezawa M, Giesbrecht K et al. 2019. Modelling human hepato-biliary-pancreatic organogenesis from the foregut-midgut boundary. Nature 574:112–16
    [Google Scholar]
  66. 66.
    Kupershmit I, Khoury-Haddad H, Awwad SW, Guttmann-Raviv N, Ayoub N. 2014. KDM4C (GASC1) lysine demethylase is associated with mitotic chromatin and regulates chromosome segregation during mitosis. Nucleic Acids Res 42:6168–82
    [Google Scholar]
  67. 67.
    Kuzmichev A, Jenuwein T, Tempst P, Reinberg D. 2004. Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol. Cell 14:183–93
    [Google Scholar]
  68. 68.
    Larson AG, Elnatan D, Keenen MM, Trnka MJ, Johnston JB et al. 2017. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547:236–40
    [Google Scholar]
  69. 69.
    Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H et al. 2014. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312–26
    [Google Scholar]
  70. 70.
    Lee HL, Archer TK. 1998. Prolonged glucocorticoid exposure dephosphorylates histone H1 and inactivates the MMTV promoter. EMBO J 17:1454–66
    [Google Scholar]
  71. 71.
    Lerner J, Bagattin A, Verdeguer F, Makinistoglu MP, Garbay S et al. 2016. Human mutations affect the epigenetic/bookmarking function of HNF1B. Nucleic Acids Res 44:8097–111
    [Google Scholar]
  72. 72.
    Lerner J, Gomez-Garcia PA, McCarthy RL, Liu Z, Lakadamyali M, Zaret KS. 2020. Two-parameter mobility assessments discriminate diverse regulatory factor behaviors in chromatin. Mol. Cell 79:677–88.e6
    [Google Scholar]
  73. 73.
    Li T, Huang T, Du M, Chen X, Du F et al. 2021. Phosphorylation and chromatin tethering prevent cGAS activation during mitosis. Science 371:eabc5386
    [Google Scholar]
  74. 74.
    Li Z, Chen L, Kabra N, Wang C, Fang J, Chen J 2009. Inhibition of SUV39H1 methyltransferase activity by DBC1. J. Biol. Chem. 284:10361–66
    [Google Scholar]
  75. 75.
    Liang K, Woodfin AR, Slaughter BD, Unruh JR, Box AC et al. 2015. Mitotic transcriptional activation: clearance of actively engaged Pol II via transcriptional elongation control in mitosis. Mol. Cell 60:435–45
    [Google Scholar]
  76. 76.
    Linares-Saldana R, Kim W, Bolar NA, Zhang H, Koch-Bojalad BA et al. 2021. BRD4 orchestrates genome folding to promote neural crest differentiation. Nat. Genet. 53:1480–92
    [Google Scholar]
  77. 77.
    Linder MI, Kohler M, Boersema P, Weberruss M, Wandke C et al. 2017. Mitotic disassembly of nuclear pore complexes involves CDK1- and PLK1-mediated phosphorylation of key interconnecting nucleoporins. Dev. Cell 43:141–56.e7
    [Google Scholar]
  78. 78.
    Liu H, Qu Q, Warrington R, Rice A, Cheng N, Yu H. 2015. Mitotic transcription installs Sgo1 at centromeres to coordinate chromosome segregation. Mol. Cell 59:426–36
    [Google Scholar]
  79. 79.
    Liu SY, Ikegami K. 2020. Nuclear lamin phosphorylation: an emerging role in gene regulation and pathogenesis of laminopathies. Nucleus 11:299–314
    [Google Scholar]
  80. 80.
    Liu X, Shen J, Xie L, Wei Z, Wong C et al. 2020. Mitotic implantation of the transcription factor Prospero via phase separation drives terminal neuronal differentiation. Dev. Cell 52:277–93.e8
    [Google Scholar]
  81. 81.
    Liu X, Zhang Y, Chen Y, Li M, Zhou F et al. 2017. In situ capture of chromatin interactions by biotinylated dCas9. Cell 170:1028–43.e19
    [Google Scholar]
  82. 82.
    Liu Y, Chen S, Wang S, Soares F, Fischer M et al. 2017. Transcriptional landscape of the human cell cycle. PNAS 114:3473–78
    [Google Scholar]
  83. 83.
    Liu Y, Pelham-Webb B, Di Giammartino DC, Li J, Kim D et al. 2017. Widespread mitotic bookmarking by histone marks and transcription factors in pluripotent stem cells. Cell Rep 19:1283–93
    [Google Scholar]
  84. 84.
    Long JJ, Leresche A, Kriwacki RW, Gottesfeld JM. 1998. Repression of TFIIH transcriptional activity and TFIIH-associated cdk7 kinase activity at mitosis. Mol. Cell. Biol. 18:1467–76
    [Google Scholar]
  85. 85.
    Macaulay C, Meier E, Forbes DJ 1995. Differential mitotic phosphorylation of proteins of the nuclear pore complex. J. Biol. Chem. 270:254–62
    [Google Scholar]
  86. 86.
    Machida S, Takizawa Y, Ishimaru M, Sugita Y, Sekine S et al. 2018. Structural basis of heterochromatin formation by human HP1. Mol. Cell 69:385–97.e8
    [Google Scholar]
  87. 87.
    Martin BJE, Brind'Amour J, Kuzmin A, Jensen KN, Liu ZC et al. 2021. Transcription shapes genome-wide histone acetylation patterns. Nat. Commun. 12:210
    [Google Scholar]
  88. 88.
    Martinez-Balbas MA, Dey A, Rabindran SK, Ozato K, Wu C. 1995. Displacement of sequence-specific transcription factors from mitotic chromatin. Cell 83:29–38
    [Google Scholar]
  89. 89.
    Merino A, Madden KR, Lane WS, Champoux JJ, Reinberg D. 1993. DNA topoisomerase I is involved in both repression and activation of transcription. Nature 365:227–32
    [Google Scholar]
  90. 90.
    Michelotti EF, Sanford S, Levens D. 1997. Marking of active genes on mitotic chromosomes. Nature 388:895–99
    [Google Scholar]
  91. 91.
    Moller A, Xie SQ, Hosp F, Lang B, Phatnani HP et al. 2012. Proteomic analysis of mitotic RNA polymerase II reveals novel interactors and association with proteins dysfunctional in disease. Mol. Cell Proteom. 11:M111.011767
    [Google Scholar]
  92. 92.
    Muchardt C, Reyes JC, Bourachot B, Leguoy E, Yaniv M. 1996. The hbrm and BRG-1 proteins, components of the human SNF/SWI complex, are phosphorylated and excluded from the condensed chromosomes during mitosis. EMBO J 15:3394–402
    [Google Scholar]
  93. 93.
    Nagano T, Lubling Y, Varnai C, Dudley C, Leung W et al. 2017. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547:61–67
    [Google Scholar]
  94. 94.
    Nakayama RT, Pulice JL, Valencia AM, McBride MJ, McKenzie ZM et al. 2017. SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters. Nat. Genet. 49:1613–23
    [Google Scholar]
  95. 95.
    Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR et al. 2013. Organization of the mitotic chromosome. Science 342:948–53
    [Google Scholar]
  96. 96.
    Neguembor MV, Martin L, Castells-Garcia A, Gomez-Garcia PA, Vicario C et al. 2021. Transcription-mediated supercoiling regulates genome folding and loop formation. Mol. Cell 81:3065–81.e12
    [Google Scholar]
  97. 97.
    Nigg EA. 1993. Targets of cyclin-dependent protein kinases. Curr. Opin. Cell Biol. 5:187–93
    [Google Scholar]
  98. 98.
    Nishibuchi G, Machida S, Nakagawa R, Yoshimura Y, Hiragami-Hamada K et al. 2019. Mitotic phosphorylation of HP1α regulates its cell cycle-dependent chromatin binding. J. Biochem. 165:433–46
    [Google Scholar]
  99. 99.
    Nishibuchi G, Machida S, Osakabe A, Murakoshi H, Hiragami-Hamada K et al. 2014. N-terminal phosphorylation of HP1α increases its nucleosome-binding specificity. Nucleic Acids Res 42:12498–511
    [Google Scholar]
  100. 100.
    Oh E, Mark KG, Mocciaro A, Watson ER, Prabu JR et al. 2020. Gene expression and cell identity controlled by anaphase-promoting complex. Nature 579:136–40
    [Google Scholar]
  101. 101.
    Padilla-Benavides T, Haokip DT, Yoon Y, Reyes-Gutierrez P, Rivera-Pérez JA, Imbalzano AN. 2020. CK2-dependent phosphorylation of the Brg1 chromatin remodeling enzyme occurs during mitosis. Int. J. Mol. Sci. 21:923
    [Google Scholar]
  102. 102.
    Palozola KC, Donahue G, Liu H, Grant GR, Becker JS et al. 2017. Mitotic transcription and waves of gene reactivation during mitotic exit. Science 358:119–22
    [Google Scholar]
  103. 103.
    Palozola KC, Donahue G, Zaret KS. 2021. EU-RNA-seq for in vivo labeling and high throughput sequencing of nascent transcripts. STAR Protoc 2:100651
    [Google Scholar]
  104. 104.
    Palozola KC, Lerner J, Zaret KS. 2019. A changing paradigm of transcriptional memory propagation through mitosis. Nat. Rev. Mol. Cell Biol. 20:55–64
    [Google Scholar]
  105. 105.
    Palozola KC, Liu H, Nicetto D, Zaret KS. 2017. Low-level, global transcription during mitosis and dynamic gene reactivation during mitotic exit. Cold Spring Harb. Symp. Quant. Biol. 82:197–205
    [Google Scholar]
  106. 106.
    Park YK, Lee JE, Yan Z, McKernan K, O'Haren T et al. 2021. Interplay of BAF and MLL4 promotes cell type-specific enhancer activation. Nat. Commun. 12:1630
    [Google Scholar]
  107. 107.
    Pascual-Garcia P, Capelson M 2019. Nuclear pores in genome architecture and enhancer function. Curr. Opin. Cell Biol. 58:126–33
    [Google Scholar]
  108. 108.
    Patil H, Wilks C, Gonzalez RW, Dhanireddy S, Conrad-Webb H, Bergel M. 2016. Mitotic activation of a novel histone deacetylase 3-linker histone H1.3 protein complex by protein kinase CK2. J. Biol. Chem. 291:3158–72
    [Google Scholar]
  109. 109.
    Pelham-Webb B, Murphy D, Apostolou E 2020. Dynamic 3D chromatin reorganization during establishment and maintenance of pluripotency. Stem Cell Rep 15:1176–95
    [Google Scholar]
  110. 110.
    Pelham-Webb B, Polyzos A, Wojenski L, Kloetgen A, Li J et al. 2021. H3K27ac bookmarking promotes rapid post-mitotic activation of the pluripotent stem cell program without impacting 3D chromatin reorganization. Mol. Cell 81:1732–48.e8
    [Google Scholar]
  111. 111.
    Perea-Resa C, Bury L, Cheeseman IM, Blower MD. 2020. Cohesin removal reprograms gene expression upon mitotic entry. Mol. Cell 78:127–40.e7
    [Google Scholar]
  112. 112.
    Peter M, Nakagawa J, Dorée M, Labbé JC, Nigg EA. 1990. In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by cdc2 kinase. Cell 61:591–602
    [Google Scholar]
  113. 113.
    Poleshko A, Smith CL, Nguyen SC, Sivaramakrishnan P, Wong KG et al. 2019. H3K9me2 orchestrates inheritance of spatial positioning of peripheral heterochromatin through mitosis. eLife 8:e49278
    [Google Scholar]
  114. 114.
    Prescott DM, Bender MA. 1962. Synthesis of RNA and protein during mitosis in mammalian tissue culture cells. Exp. Cell Res. 26:260–68
    [Google Scholar]
  115. 115.
    Quinodoz SA, Jachowicz JW, Bhat P, Ollikainen N, Banerjee AK et al. 2021. RNA promotes the formation of spatial compartments in the nucleus. Cell 184:5775–90.e30
    [Google Scholar]
  116. 116.
    Raccaud M, Friman ET, Alber AB, Agarwal H, Deluz C et al. 2019. Mitotic chromosome binding predicts transcription factor properties in interphase. Nat. Commun. 10:487
    [Google Scholar]
  117. 117.
    Raccaud M, Suter DM. 2018. Transcription factor retention on mitotic chromosomes: regulatory mechanisms and impact on cell fate decisions. FEBS Lett 592:878–87
    [Google Scholar]
  118. 118.
    Reinberg D, Vales LD. 2018. Chromatin domains rich in inheritance. Science 361:33–34
    [Google Scholar]
  119. 119.
    Roux KJ, Kim DI, Raida M, Burke B. 2012. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196:801–10
    [Google Scholar]
  120. 120.
    Sarnataro S, Riba A, Molina N. 2021. Regulation of transcription reactivation dynamics exiting mitosis. PLOS Comput. Biol. 17:e1009354
    [Google Scholar]
  121. 121.
    Schmidt D, Schwalie PC, Ross-Innes CS, Hurtado A, Brown GD et al. 2010. A CTCF-independent role for cohesin in tissue-specific transcription. Genome Res 20:578–88
    [Google Scholar]
  122. 122.
    Schopp IM, Amaya Ramirez CC, Debeljak J, Kreibich E, Skribbe M et al. 2017. Split-BioID a conditional proteomics approach to monitor the composition of spatiotemporally defined protein complexes. Nat. Commun. 8:15690
    [Google Scholar]
  123. 123.
    Segil N, Guermah M, Hoffmann A, Roeder RG, Heintz N. 1996. Mitotic regulation of TFIID: inhibition of activator-dependent transcription and changes in subcellular localization. Genes Dev 10:2389–400
    [Google Scholar]
  124. 124.
    Shykind BM, Kim J, Stewart L, Champoux JJ, Sharp PA. 1997. Topoisomerase I enhances TFIID-TFIIA complex assembly during activation of transcription. Genes Dev 11:397–407
    [Google Scholar]
  125. 125.
    Sif S, Stukenberg PT, Kirschner MW, Kingston RE. 1998. Mitotic inactivation of a human SWI/SNF chromatin remodeling complex. Genes Dev 12:2842–51
    [Google Scholar]
  126. 126.
    Singh AK, Rastogi S, Shukla H, Asalam M, Rath SK, Akhtar MS. 2017. Cdc15 phosphorylates the C-terminal domain of RNA polymerase II for transcription during mitosis. J. Biol. Chem. 292:5507–18
    [Google Scholar]
  127. 127.
    Skene PJ, Henikoff S. 2017. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6:e21856
    [Google Scholar]
  128. 128.
    Soares MAF, Soares DS, Teixeira V, Heskol A, Bressan RB et al. 2021. Hierarchical reactivation of transcription during mitosis-to-G1 transition by Brn2 and Ascl1 in neural stem cells. Genes Dev 35:1020–34
    [Google Scholar]
  129. 129.
    Stevens K, Cirillo L, Zaret KS. 2000. Creating temperature-sensitive winged helix transcription factors: amino acids that stabilize the DNA binding domain of HNF3. J. Biol. Chem. 275:30471–77
    [Google Scholar]
  130. 130.
    Sun J, Shi Y, Yildirim E. 2019. The nuclear pore complex in cell type-specific chromatin structure and gene regulation. Trends Genet 35:579–88
    [Google Scholar]
  131. 131.
    Sun L, Wu J, Du F, Chen X, Chen ZJ 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786–91
    [Google Scholar]
  132. 132.
    Teves SS, An L, Bhargava-Shah A, Xie L, Darzacq X, Tjian R. 2018. A stable mode of bookmarking by TBP recruits RNA polymerase II to mitotic chromosomes. eLife 7:e35621
    [Google Scholar]
  133. 133.
    Teves SS, An L, Hansen AS, Xie L, Darzacq X, Tjian R. 2016. A dynamic mode of mitotic bookmarking by transcription factors. eLife 5:e22280
    [Google Scholar]
  134. 134.
    Trinkle-Mulcahy L, Andrews PD, Wickramasinghe S, Sleeman J, Prescott A et al. 2003. Time-lapse imaging reveals dynamic relocalization of PP1γ throughout the mammalian cell cycle. Mol. Biol. Cell 14:107–17
    [Google Scholar]
  135. 135.
    Trojer P, Zhang J, Yonezawa M, Schmidt A, Zheng H et al. 2009. Dynamic histone H1 isotype 4 methylation and demethylation by histone lysine methyltransferase G9a/KMT1C and the Jumonji domain-containing JMJD2/KDM4 proteins. J. Biol. Chem. 284:8395–405
    [Google Scholar]
  136. 136.
    Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D. 2004. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol. Cell 16:93–105
    [Google Scholar]
  137. 137.
    Villasenor R, Pfaendler R, Ambrosi C, Butz S, Giuliani S et al. 2020. ChromID identifies the protein interactome at chromatin marks. Nat. Biotechnol. 38:728–36
    [Google Scholar]
  138. 138.
    Wang D, Wang J, Bai L, Pan H, Feng H et al. 2020. Long-term expansion of pancreatic islet organoids from resident Procr+ progenitors. Cell 180:1198–211.e19
    [Google Scholar]
  139. 139.
    Ward GE, Kirschner MW. 1990. Identification of cell cycle-regulated phosphorylation sites on nuclear lamin C. Cell 61:561–77
    [Google Scholar]
  140. 140.
    Wiegard A, Kuzin V, Cameron DP, Grosser J, Ceribelli M et al. 2021. Topoisomerase 1 activity during mitotic transcription favors the transition from mitosis to G1. Mol. Cell 81:5007–24.e9
    [Google Scholar]
  141. 141.
    Xing H, Vanderford NL, Sarge KD. 2008. The TBP-PP2A mitotic complex bookmarks genes by preventing condensin action. Nat. Cell Biol. 10:1318–23
    [Google Scholar]
  142. 142.
    Yang H, Wang H, Ren J, Chen Q, Chen ZJ. 2017. cGAS is essential for cellular senescence. PNAS 114:E4612–20
    [Google Scholar]
  143. 143.
    Zaidi SK, Young DW, Pockwinse SM, Javed A, Lian JB et al. 2003. Mitotic partitioning and selective reorganization of tissue-specific transcription factors in progeny cells. PNAS 100:14852–57
    [Google Scholar]
  144. 144.
    Zaret KS. 2014. Genome reactivation after the silence in mitosis: recapitulating mechanisms of development?. Dev. Cell 29:132–34
    [Google Scholar]
  145. 145.
    Zhang H, Emerson DJ, Gilgenast TG, Titus KR, Lan Y et al. 2019. Chromatin structure dynamics during the mitosis-to-G1 phase transition. Nature 576:158–62
    [Google Scholar]
  146. 146.
    Zhang H, Lam J, Zhang D, Lan Y, Vermunt MW et al. 2021. CTCF and transcription influence chromatin structure re-configuration after mitosis. Nat. Commun. 12:5157
    [Google Scholar]
  147. 147.
    Zhang S, Ubelmesser N, Josipovic N, Forte G, Slotman JA et al. 2021. RNA polymerase II is required for spatial chromatin reorganization following exit from mitosis. Sci. Adv. 7:eabg8205
    [Google Scholar]
  148. 148.
    Zhou L, Tian X, Zhu C, Wang F, Higgins JM 2014. Polo-like kinase-1 triggers histone phosphorylation by Haspin in mitosis. EMBO Rep 15:273–81
    [Google Scholar]
  149. 149.
    Zierhut C, Yamaguchi N, Paredes M, Luo JD, Carroll T, Funabiki H 2019. The cytoplasmic DNA sensor cGAS promotes mitotic cell death. Cell 178:302–15.e23
    [Google Scholar]
  150. 150.
    Zullo JM, Demarco IA, Pique-Regi R, Gaffney DJ, Epstein CB et al. 2012. DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina. Cell 149:1474–87
    [Google Scholar]
/content/journals/10.1146/annurev-genom-121321-094603
Loading
/content/journals/10.1146/annurev-genom-121321-094603
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error