Skip to main content

Advertisement

Log in

Germinal Center-Related G Protein-Coupled Receptors in Antibody-Mediated Autoimmune Skin Diseases: from Basic Research to Clinical Trials

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Germinal center (GC) reaction greatly contributes to the humoral immune response, which begins in lymph nodes or other secondary lymphoid organs after follicular B cells are activated by T-dependent antigens. The GCs then serve as a platform for follicular B cells to complete clonal expansion and somatic hypermutation and then interact with follicular dendritic cells (FDC) and follicular helper T cells (Tfh). Through the interaction between the immune cells, significant processes of the humoral immune response are accomplished, such as antibody affinity maturation, class switching, and production of memory B cells and plasma cells. Cell positioning during the GC reaction is mainly mediated by the chemokine receptors and lipid receptors, which both belong to G protein-coupled receptors (GPCRs) family. There are some orphan GPCRs whose endogenous ligands are unclear yet contribute to the regulation of GC reaction as well. This review will give an introduction on the ligands and functions of two types of GC-relating GPCRs—chemokine receptors like CXCR4 and CXCR5, as well as emerging de-orphanized GPCRs like GPR183, GPR174, and P2RY8. The roles these GPCRs play in several antibody-mediated autoimmune skin diseases will be also discussed, including systemic lupus erythematosus (SLE), pemphigus, scleroderma, and dermatomyositis. Besides, GPCRs are excellent drug targets due to the unique structure and vital functions. Therefore, this review is aimed at providing readers with a focused knowledge about the role that GPCRs play in GC reaction, as well as in provoking the development of GPCR-targeting agents for immune-mediated diseases besides autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lee A, Bannan JL, Adams MJ et al (2017) Expression of CCR6 on B cells in systemic lupus erythematosus patients[J]. Clin Rheumatol 36(6):1453–1456

    Article  PubMed  Google Scholar 

  2. Demoor T, Bracke KR, Maes T et al (2009) Role of lymphotoxin-alpha in cigarette smoke-induced inflammation and lymphoid neogenesis[J]. Eur Respir J 34(2):405–416

    Article  CAS  PubMed  Google Scholar 

  3. Anderson MW, Zhao S, Ai WZ et al (2010) C-C chemokine receptor 1 expression in human hematolymphoid neoplasia[J]. Am J Clin Pathol 133(3):473–483

    Article  PubMed  Google Scholar 

  4. Hauser AS, Chavali S, Masuho I et al (2018) Pharmacogenomics of GPCR Drug Targets[J]. Cell 172(1–2):41–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Koscielny G, An P, Carvalho-Silva D et al (2017) Open Targets: a platform for therapeutic target identification and validation[J]. Nucleic Acids Res 45(D1):D985–D994

    Article  CAS  PubMed  Google Scholar 

  6. Cabral-Marques O, Marques A, Giil LM et al (2018) GPCR-specific autoantibody signatures are associated with physiological and pathological immune homeostasis[J]. Nat Commun 9(1):5224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Groves A, Kihara Y, Jonnalagadda D et al (2018) A functionally defined in vivo astrocyte population identified by c-Fos activation in a mouse model of multiple sclerosis modulated by S1P signaling: immediate-early astrocytes (ieAstrocytes)[J]. eNeuro 5(5)

  8. Li E, Shan H, Chen L et al (2019) OLFR734 Mediates glucose metabolism as a receptor of asprosin[J]. Cell Metab 30(2):319–328

    Article  CAS  PubMed  Google Scholar 

  9. Sharma G, Hu C, Staquicini DI et al (2020) Preclinical efficacy of the GPER-selective agonist G-1 in mouse models of obesity and diabetes[J]. Sci Transl Med 12(528)

  10. Palacios JM, Pazos A, Hoyer D (2017) A short history of the 5-HT(2C) receptor: from the choroid plexus to depression, obesity and addiction treatment[J]. Psychopharmacology 234(9–10):1395–1418

    Article  CAS  PubMed  Google Scholar 

  11. Yempala T, Brea J, Loza MI et al (2020) Dibenzofuranylethylamines as 5-HT(2A/2C) receptor agonists[J]. ACS Omega 5(5):2260–2266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang W, Tu CL, Jean-Alphonse FG et al (2020) PTH hypersecretion triggered by a GABA(B1) and Ca(2+)-sensing receptor heterocomplex in hyperparathyroidism[J]. Nat Metab 2(3):243–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abdel-Magid AF (2019) Treatment of diabetes, obesity, dyslipidemia, and related disorders with GPR119 agonists[J]. ACS Med Chem Lett 10(1):14–15

    Article  CAS  PubMed  Google Scholar 

  14. Celorrio M, Rojo-Bustamante E, Fernández-Suárez D et al (2017) GPR55: a therapeutic target for Parkinson’s disease?[J]. Neuropharmacology 125:319–332

    Article  CAS  PubMed  Google Scholar 

  15. Planell N, Masamunt MC, Leal RF et al (2017) Usefulness of transcriptional blood biomarkers as a non-invasive surrogate marker of mucosal healing and endoscopic response in ulcerative colitis[J]. J Crohns Colitis 11(11):1335–1346

    Article  PubMed  PubMed Central  Google Scholar 

  16. Griffith JW, Sokol CL, Luster AD (2014) Chemokines and chemokine receptors: positioning cells for host defense and immunity[J]. Annu Rev Immunol 32:659–702

    Article  CAS  PubMed  Google Scholar 

  17. Schulz O, Hammerschmidt SI, Moschovakis GL et al (2016) Chemokines and chemokine receptors in lymphoid tissue dynamics[J]. Annu Rev Immunol 34:203–242

    Article  CAS  PubMed  Google Scholar 

  18. Friedman SL, Ratziu V, Harrison SA et al (2018) A randomized, placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis[J]. Hepatology 67(5):1754–1767

    Article  CAS  PubMed  Google Scholar 

  19. Sato T, Coler-Reilly A, Yagishita N et al (2018) Mogamulizumab (anti-CCR4) in HTLV-1-associated myelopathy[J]. N Engl J Med 378(6):529–538

    Article  CAS  PubMed  Google Scholar 

  20. Kim YH, Bagot M, Pinter-Brown L et al (2018) Mogamulizumab versus vorinostat in previously treated cutaneous T-cell lymphoma (MAVORIC): an international, open-label, randomised, controlled phase 3 trial[J]. Lancet Oncol 19(9):1192–1204

    Article  CAS  PubMed  Google Scholar 

  21. Schott AF, Goldstein LJ, Cristofanilli M et al (2017) Phase Ib Pilot study to evaluate reparixin in combination with weekly paclitaxel in patients with HER-2-negative metastatic breast cancer[J]. Clin Cancer Res 23(18):5358–5365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakajima C, Mukai T, Yamaguchi N et al (2002) Induction of the chemokine receptor CXCR3 on TCR-stimulated T cells: dependence on the release from persistent TCR-triggering and requirement for IFN-gamma stimulation[J]. Eur J Immunol 32(6):1792–1801

    Article  CAS  PubMed  Google Scholar 

  23. Groom JR, Richmond J, Murooka TT et al (2012) CXCR3 chemokine receptor-ligand interactions in the lymph node optimize CD4+ T helper 1 cell differentiation[J]. Immunity 37(6):1091–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Campbell DJ, Kim CH, Butcher EC (2001) Separable effector T cell populations specialized for B cell help or tissue inflammation[J]. Nat Immunol 2(9):876–881

    Article  CAS  PubMed  Google Scholar 

  25. Shi J, Hou S, Fang Q et al (2018) PD-1 Controls follicular T helper cell positioning and function[J]. Immunity 49(2):264–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Turpin D, Furudoi A, Parrens M et al (2018) Increase of follicular helper T cells skewed toward a Th1 profile in CVID patients with non-infectious clinical complications[J]. Clin Immunol 197:130–138

  27. Bier J, Rao G, Payne K et al (2019) Activating mutations in PIK3CD disrupt the differentiation and function of human and murine CD4(+) T cells[J]. J Allergy Clin Immunol 144(1):236–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ottaviano G, Gerosa J, Santini M et al (2020) A prevalent CXCR3(+) phenotype of circulating follicular helper T cells indicates humoral dysregulation in children with Down Syndrome[J]. J Clin Immunol 40(3):447–455

    Article  CAS  PubMed  Google Scholar 

  29. Kawaguchi N, Zhang TT, Nakanishi T (2019) Involvement of CXCR4 in normal and abnormal development[J]. Cells 8(2)

  30. Allen CD, Ansel KM, Low C et al (2004) Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5[J]. Nat Immunol 5(9):943–952

    Article  CAS  PubMed  Google Scholar 

  31. Weber TS (2018) Cell cycle-associated CXCR4 expression in germinal center B cells and its implications on affinity maturation[J]. Front Immunol 9:1313

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pak HK, Nam B, Lee YK et al (2018) Human plasmablast migration toward CXCL12 requires glucose oxidation by enhanced pyruvate dehydrogenase activity via AKT[J]. Front Immunol 9:1742

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jandl C, Liu SM, Cañete PF et al (2017) IL-21 restricts T follicular regulatory T cell proliferation through Bcl-6 mediated inhibition of responsiveness to IL-2[J]. Nat Commun 8:14647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Unger PA, Lighaam LC, Vermeulen E et al (2020) Divergent chemokine receptor expression and the consequence for human IgG4 B cell responses[J]. Eur J Immunol

  35. Vanderleyden I, Fra-Bido SC, Innocentin S et al (2020) Follicular regulatory T cells can access the germinal center independently of CXCR5[J]. Cell Rep 30(3):611–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shen E, Rabe H, Luo L et al (2019) Control of germinal center localization and lineage stability of follicular regulatory T cells by the Blimp1 transcription factor[J]. Cell Rep 29(7):1848–1861

    Article  PubMed  PubMed Central  Google Scholar 

  37. Denton AE, Innocentin S, Carr EJ et al (2019) Type I interferon induces CXCL13 to support ectopic germinal center formation[J]. J Exp Med 216(3):621–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen Y, Yu M, Zheng Y et al (2019) CXCR5(+)PD-1(+) follicular helper CD8 T cells control B cell tolerance[J]. Nat Commun 10(1):4415

    Article  PubMed  PubMed Central  Google Scholar 

  39. Moschovakis GL, Bubke A, Friedrichsen M et al (2017) T cell specific Cxcr5 deficiency prevents rheumatoid arthritis[J]. Sci Rep 7(1):8933

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gu-Trantien C, Migliori E, Buisseret L et al (2017) CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer[J]. JCI Insight 2(11)

  41. Wang C, Chen W, Shen J (2018) CXCR7 targeting and its major disease relevance[J]. Front Pharmacol 9:641

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tarnowski M, Liu R, Wysoczynski M et al (2010) CXCR7: a new SDF-1-binding receptor in contrast to normal CD34(+) progenitors is functional and is expressed at higher level in human malignant hematopoietic cells[J]. Eur J Haematol 85(6):472–483

    Article  CAS  PubMed  Google Scholar 

  43. Tarnowski M, Grymula K, Liu R et al (2010) Macrophage migration inhibitory factor is secreted by rhabdomyosarcoma cells, modulates tumor metastasis by binding to CXCR4 and CXCR7 receptors and inhibits recruitment of cancer-associated fibroblasts[J]. Mol Cancer Res 8(10):1328–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Szpakowska M, Dupuis N, Baragli A et al (2016) Human herpesvirus 8-encoded chemokine vCCL2/vMIP-II is an agonist of the atypical chemokine receptor ACKR3/CXCR7[J]. Biochem Pharmacol 114:14–21

    Article  CAS  PubMed  Google Scholar 

  45. Humpert ML, Pinto D, Jarrossay D et al (2014) CXCR7 influences the migration of B cells during maturation[J]. Eur J Immunol 44(3):694–705

    Article  CAS  PubMed  Google Scholar 

  46. Boldajipour B, Mahabaleshwar H, Kardash E et al (2008) Control of chemokine-guided cell migration by ligand sequestration[J]. Cell 132(3):463–473

    Article  CAS  PubMed  Google Scholar 

  47. Wang H, Beaty N, Chen S et al (2012) The CXCR7 chemokine receptor promotes B-cell retention in the splenic marginal zone and serves as a sink for CXCL12[J]. Blood 119(2):465–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kuang L, Wu J, Su N et al (2020) FGFR3 deficiency enhances CXCL12-dependent chemotaxis of macrophages via upregulating CXCR7 and aggravates joint destruction in mice[J]. Ann Rheum Dis 79(1):112–122

    Article  CAS  PubMed  Google Scholar 

  49. Zabel BA, Lewén S, Berahovich RD et al (2011) The novel chemokine receptor CXCR7 regulates trans-endothelial migration of cancer cells[J]. Mol Cancer 10:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Daniel SK, Seo YD, Pillarisetty VG (2020) The CXCL12-CXCR4/CXCR7 axis as a mechanism of immune resistance in gastrointestinal malignancies[J]. Semin Cancer Biol 65:176–188

    Article  CAS  PubMed  Google Scholar 

  51. Xu S, Tang J, Wang C et al (2019) CXCR7 promotes melanoma tumorigenesis via Src kinase signaling[J]. Cell Death Dis 10(3):191

    Article  PubMed  PubMed Central  Google Scholar 

  52. Werner TA, Forster CM, Dizdar L et al (2018) CXCR4/CXCR7/CXCL12-axis in follicular thyroid carcinoma[J]. J Cancer 9(6):929–940

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li S, Fong KW, Gritsina G et al (2019) Activation of MAPK Signaling by CXCR7 leads to enzalutamide resistance in prostate cancer[J]. Cancer Res 79(10):2580–2592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Becker JH, Gao Y, Soucheray M et al (2019) CXCR7 reactivates ERK signaling to promote resistance to EGFR kinase inhibitors in NSCLC[J]. Cancer Res 79(17):4439–4452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Reimer D, Lee AY, Bannan J et al (2017) Early CCR6 expression on B cells modulates germinal centre kinetics and efficient antibody responses[J]. Immunol Cell Biol 95(1):33–41

    Article  CAS  PubMed  Google Scholar 

  56. Kochi Y, Okada Y, Suzuki A et al (2010) A regulatory variant in CCR6 is associated with rheumatoid arthritis susceptibility[J]. Nat Genet 42(6):515–519

    Article  CAS  PubMed  Google Scholar 

  57. Suan D, Kräutler NJ, Maag J et al (2017) CCR6 defines memory B cell precursors in mouse and human germinal centers, revealing light-zone location and predominant low antigen affinity[J]. Immunity 47(6):1142–1153

    Article  CAS  PubMed  Google Scholar 

  58. Lin YL, Ip PP, Liao F (2017) CCR6 Deficiency impairs IgA production and dysregulates antimicrobial peptide production, altering the intestinal flora[J]. Front Immunol 8:805

    Article  PubMed  PubMed Central  Google Scholar 

  59. Albright AR, Kabat J, Li M et al (2019) TGFβ signaling in germinal center B cells promotes the transition from light zone to dark zone[J]. J Exp Med 216(11):2531–2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ryota H, Ishida M, Satoi S et al (2019) Clinicopathological and immunological features of follicular pancreatitis - a distinct disease entity characterised by Th17 activation[J]. Histopathology 74(5):709–717

    Article  PubMed  Google Scholar 

  61. Bonami RH, Nyhoff LE, McNitt DH et al (2020) T-B Lymphocyte interactions promote type 1 diabetes independently of SLAM-associated protein[J]. J Immunol

  62. Alvarez D, Vollmann EH, von Andrian UH (2008) Mechanisms and consequences of dendritic cell migration[J]. Immunity 29(3):325–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hashizume-Takizawa T, Kobayashi R, Tsuzukibashi O et al (2019) CCR7-deficient mice exhibit a delayed antigen-specific mucosal IgA antibody response to an oral recombinant Salmonella strain[J]. Pathog Dis 77(3)

  64. Liu X, Chen X, Zhong B et al (2014) Transcription factor achaete-scute homologue 2 initiates follicular T-helper-cell development[J]. Nature 507(7493):513–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kara EE, Bastow CR, McKenzie DR et al (2018) Atypical chemokine receptor 4 shapes activated B cell fate[J]. J Exp Med 215(3):801–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Birkenbach M, Josefsen K, Yalamanchili R et al (1993) Epstein-Barr virus-induced genes: first lymphocyte-specific G protein-coupled peptide receptors[J]. J Virol 67(4):2209–2220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hannedouche S, Zhang J, Yi T et al (2011) Oxysterols direct immune cell migration via EBI2[J]. Nature 475(7357):524–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pereira JP, Kelly LM, Xu Y et al (2009) EBI2 mediates B cell segregation between the outer and centre follicle[J]. Nature 460(7259):1122–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gatto D, Paus D, Basten A et al (2009) Guidance of B cells by the orphan G protein-coupled receptor EBI2 shapes humoral immune responses[J]. Immunity 31(2):259–269

    Article  CAS  PubMed  Google Scholar 

  70. Gatto D, Wood K, Brink R (2011) EBI2 operates independently of but in cooperation with CXCR5 and CCR7 to direct B cell migration and organization in follicles and the germinal center[J]. J Immunol 187(9):4621–4628

    Article  CAS  PubMed  Google Scholar 

  71. Suan D, Nguyen A, Moran I et al (2015) T follicular helper cells have distinct modes of migration and molecular signatures in naive and memory immune responses[J]. Immunity 42(4):704–718

    Article  CAS  PubMed  Google Scholar 

  72. Li J, Lu E, Yi T et al (2016) EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells[J]. Nature 533(7601):110–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Niss AK, Barington L, Benned-Jensen T et al (2017) EBI2 overexpression in mice leads to B1 B-cell expansion and chronic lymphocytic leukemia-like B-cell malignancies[J]. Blood 129(7):866–878

    Article  Google Scholar 

  74. Feldman S, Kasjanski R, Poposki J et al (2017) Chronic airway inflammation provides a unique environment for B cell activation and antibody production[J]. Clin Exp Allergy 47(4):457–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Barnes MJ, Li CM, Xu Y et al (2015) The lysophosphatidylserine receptor GPR174 constrains regulatory T cell development and function[J]. J Exp Med 212(7):1011–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Qiu D, Chu X, Hua L et al (2019) Gpr174-deficient regulatory T cells decrease cytokine storm in septic mice[J]. Cell Death Dis 10(3):233

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhu M, Li C, Song Z et al (2020) The increased marginal zone B cells attenuates early inflammatory responses during sepsis in Gpr174 deficient mice[J]. Int Immunopharmacol 81:106034

  78. Chu X, Shen M, Xie F et al (2013) An X chromosome-wide association analysis identifies variants in GPR174 as a risk factor for Graves’ disease[J]. J Med Genet 50(7):479–485

    Article  CAS  PubMed  Google Scholar 

  79. Yue J, Zhao X (2020) GPR174 suppression attenuates retinopathy in angiotensin II (Ang II)-treated mice by reducing inflammation via PI3K/AKT signaling[J]. Biomed Pharmacother 122:109701

  80. Konkel JE, Zhang D, Zanvit P et al (2017) Transforming growth factor-β signaling in regulatory T cells controls T helper-17 cells and tissue-specific immune responses[J]. Immunity 46(4):660–674

    Article  CAS  PubMed  Google Scholar 

  81. Zhao R, Chen X, Ma W et al (2020) A GPR174-CCL21 module imparts sexual dimorphism to humoral immunity[J]. Nature 577(7790):416–420

    Article  CAS  PubMed  Google Scholar 

  82. Lohr JG, Stojanov P, Lawrence MS et al (2012) Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing[J]. Proc Natl Acad Sci U S A 109(10):3879–3884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Muppidi JR, Schmitz R, Green JA et al (2014) Loss of signalling via Gα13 in germinal centre B-cell-derived lymphoma[J]. Nature 516(7530):254–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dou H, Chen X, Huang Y et al (2017) Prognostic significance of P2RY8-CRLF2 and CRLF2 overexpression may vary across risk subgroups of childhood B-cell acute lymphoblastic leukemia[J]. Genes Chromosomes Cancer 56(2):135–146

    Article  CAS  PubMed  Google Scholar 

  85. Potter N, Jones L, Blair H et al (2019) Single-cell analysis identifies CRLF2 rearrangements as both early and late events in Down syndrome and non-Down syndrome acute lymphoblastic leukaemia[J]. Leukemia 33(4):893–904

    Article  CAS  PubMed  Google Scholar 

  86. Muppidi JR, Lu E, Cyster JG (2015) The G protein-coupled receptor P2RY8 and follicular dendritic cells promote germinal center confinement of B cells, whereas S1PR3 can contribute to their dissemination[J]. J Exp Med 212(13):2213–2222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lu E, Wolfreys FD, Muppidi JR et al (2019) S-Geranylgeranyl-L-glutathione is a ligand for human B cell-confinement receptor P2RY8[J]. Nature 567(7747):244–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Brune V, Tiacci E, Pfeil I et al (2008) Origin and pathogenesis of nodular lymphocyte-predominant Hodgkin lymphoma as revealed by global gene expression analysis[J]. J Exp Med 205(10):2251–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. He Y, Gallman AE, Xie C et al (2022) P2RY8 variants in lupus patients uncover a role for the receptor in immunological tolerance[J]. J Exp Med 219(1)

  90. Chang A, Henderson SG, Brandt D et al (2011) In situ B cell-mediated immune responses and tubulointerstitial inflammation in human lupus nephritis[J]. J Immunol 186(3):1849–1860

    Article  CAS  PubMed  Google Scholar 

  91. Caielli S, Veiga DT, Balasubramanian P et al (2019) A CD4(+) T cell population expanded in lupus blood provides B cell help through interleukin-10 and succinate[J]. Nat Med 25(1):75–81

    Article  CAS  PubMed  Google Scholar 

  92. Zhao LD, Liang D, Wu XN et al (2017) Contribution and underlying mechanisms of CXCR4 overexpression in patients with systemic lupus erythematosus[J]. Cell Mol Immunol 14(10):842–849

    Article  CAS  PubMed  Google Scholar 

  93. Kiso K, Yoshifuji H, Oku T et al (2017) Transgelin-2 is upregulated on activated B-cells and expressed in hyperplastic follicles in lupus erythematosus patients[J]. PLoS One 12(9):e184738

  94. Kim AR, Han D, Choi JY et al (2020) Targeting inducible costimulator expressed on CXCR5(+)PD-1(+) T(H) cells suppresses the progression of pemphigus vulgaris[J]. J Allergy Clin Immunol 146(5):1070–1079

    Article  CAS  PubMed  Google Scholar 

  95. Wang Y, Zhang S, Liang Z et al (2019) Metformin attenuates bleomycin-induced scleroderma by regulating the balance of Treg/Teff cells and reducing spleen germinal center formation[J]. Mol Immunol 114:72–80

    Article  CAS  PubMed  Google Scholar 

  96. Elia G (2015) Dermatomyositis and chemokines[J]. Clin Ter 166(2):e118–e121

    CAS  PubMed  Google Scholar 

  97. Fujiyama T, Ito T, Ogawa N et al (2014) Preferential infiltration of interleukin-4-producing CXCR4+ T cells in the lesional muscle but not skin of patients with dermatomyositis[J]. Clin Exp Immunol 177(1):110–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Xing R, Liu F, Yang Y et al (2018) GPR54 deficiency reduces the Treg population and aggravates experimental autoimmune encephalomyelitis in mice[J]. Sci China Life Sci 61(6):675–687

    Article  CAS  PubMed  Google Scholar 

  99. Truong KL, Schlickeiser S, Vogt K et al (2019) Killer-like receptors and GPR56 progressive expression defines cytokine production of human CD4(+) memory T cells[J]. Nat Commun 10(1):2263

    Article  PubMed  PubMed Central  Google Scholar 

  100. Onozawa Y, Fujita Y, Kuwabara H et al (2012) Activation of T cell death-associated gene 8 regulates the cytokine production of T cells and macrophages in vitro[J]. Eur J Pharmacol 683(1–3):325–331

    Article  CAS  PubMed  Google Scholar 

  101. Robert R, Mackay CR (2018) Gαs-coupled GPCRs GPR65 and GPR174. Downers for immune responses[J]. Immunol Cell Biol 96(4):341–343

  102. Lassen KG, McKenzie CI, Mari M et al (2016) Genetic coding variant in GPR65 alters lysosomal pH and links lysosomal dysfunction with colitis risk[J]. Immunity 44(6):1392–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wirasinha RC, Vijayan D, Smith NJ et al (2018) GPR65 inhibits experimental autoimmune encephalomyelitis through CD4(+) T cell independent mechanisms that include effects on iNKT cells[J]. Immunol Cell Biol 96(2):128–136

    Article  CAS  PubMed  Google Scholar 

  104. Xiong Y, Piao W, Brinkman CC et al (2019) CD4 T cell sphingosine 1-phosphate receptor (S1PR)1 and S1PR4 and endothelial S1PR2 regulate afferent lymphatic migration[J]. Sci Immunol 4(33)

  105. Ogretmen B (2018) Sphingolipid metabolism in cancer signalling and therapy[J]. Nat Rev Cancer 18(1):33–50

    Article  CAS  PubMed  Google Scholar 

  106. Chaudhry BZ, Cohen JA, Conway DS (2017) Sphingosine 1-phosphate receptor modulators for the treatment of multiple sclerosis[J]. Neurotherapeutics 14(4):859–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pérez-Jeldres T, Tyler CJ, Boyer JD et al (2019) Targeting cytokine signaling and lymphocyte traffic via small molecules in inflammatory bowel disease: JAK Inhibitors and S1PR Agonists[J]. Front Pharmacol 10:212

    Article  PubMed  PubMed Central  Google Scholar 

  108. Sukocheva OA, Furuya H, Ng ML et al (2020) Sphingosine kinase and sphingosine-1-phosphate receptor signaling pathway in inflammatory gastrointestinal disease and cancers: a novel therapeutic target[J]. Pharmacol Ther 207:107464

  109. Cartier A, Hla T (2019) Sphingosine 1-phosphate: lipid signaling in pathology and therapy[J]. Science 366(6463)

  110. Huwiler A, Zangemeister-Wittke U (2018) The sphingosine 1-phosphate receptor modulator fingolimod as a therapeutic agent: recent findings and new perspectives[J]. Pharmacol Ther 185:34–49

    Article  CAS  PubMed  Google Scholar 

  111. Hargreaves DC, Hyman PL, Lu TT et al (2001) A coordinated change in chemokine responsiveness guides plasma cell movements[J]. J Exp Med 194(1):45–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hao H, Nakayamada S, Yamagata K et al (2020) Conversion of T follicular helper cells to T follicular regulatory cells by interleukin-2 through transcriptional regulation in systemic lupus erythematosus[J]. Arthritis Rheumatol

  113. Wang Z, Zhao M, Yin J et al (2020) E4BP4-mediated inhibition of T follicular helper cell differentiation is compromised in autoimmune diseases[J]. J Clin Invest 130(7):3717–3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liu C, Wang D, Song Y et al (2018) Increased circulating CD4(+)CXCR5(+)FoxP3(+) follicular regulatory T cells correlated with severity of systemic lupus erythematosus patients[J]. Int Immunopharmacol 56:261–268

    Article  CAS  PubMed  Google Scholar 

  115. Cao G, Wang P, Cui Z et al (2020) An imbalance between blood CD4(+)CXCR5(+)Foxp3(+) Tfr cells and CD4(+)CXCR5(+)Tfh cells may contribute to the immunopathogenesis of rheumatoid arthritis[J]. Mol Immunol 125:1–8

    Article  CAS  PubMed  Google Scholar 

  116. Zheng J, Wang T, Zhang L et al (2017) Dysregulation of circulating Tfr/Tfh ratio in primary biliary cholangitis[J]. Scand J Immunol 86(6):452–461

    Article  CAS  PubMed  Google Scholar 

  117. Kataoka K, Nagata Y, Kitanaka A et al (2015) Integrated molecular analysis of adult T cell leukemia/lymphoma[J]. Nat Genet 47(11):1304–1315

    Article  CAS  PubMed  Google Scholar 

  118. Zhou W, Guo S, Liu M et al (2019) Targeting CXCL12/CXCR4 axis in tumor immunotherapy[J]. Curr Med Chem 26(17):3026–3041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Döring Y, Noels H, van der Vorst E et al (2017) Vascular CXCR4 limits atherosclerosis by maintaining arterial integrity: evidence from mouse and human studies[J]. Circulation 136(4):388–403

    Article  PubMed  PubMed Central  Google Scholar 

  120. Scholten DJ, Canals M, Wijtmans M et al (2012) Pharmacological characterization of a small-molecule agonist for the chemokine receptor CXCR3[J]. Br J Pharmacol 166(3):898–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cancilla D, Rettig MP, DiPersio JF (2020) Targeting CXCR4 in AML and ALL[J]. Front Oncol 10:1672

    Article  PubMed  PubMed Central  Google Scholar 

  122. Adlere I, Caspar B, Arimont M et al (2019) Modulators of CXCR4 and CXCR7/ACKR3 function[J]. Mol Pharmacol 96(6):737–752

    Article  CAS  PubMed  Google Scholar 

  123. Tan Q, Zhu Y, Li J et al (2013) Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex[J]. Science 341(6152):1387–1390

    Article  CAS  PubMed  Google Scholar 

  124. Richmond JM, Strassner JP, Essien KI et al (2019) T-cell positioning by chemokines in autoimmune skin diseases[J]. Immunol Rev 289(1):186–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rizeq B, Malki MI (2020) The Role of CCL21/CCR7 chemokine axis in breast cancer progression[J]. Cancers (Basel) 12(4)

  126. Salem A, Alotaibi M, Mroueh R et al (2021) CCR7 as a therapeutic target in cancer[J]. Biochim Biophys Acta Rev Cancer 1875(1):188499

  127. Braden K, Giancotti LA, Chen Z et al (2020) GPR183-oxysterol axis in spinal cord contributes to neuropathic pain[J]. J Pharmacol Exp Ther 375(2):367–375

    Article  CAS  PubMed  Google Scholar 

  128. Misselwitz B, Wyss A, Raselli T et al (2021) The oxysterol receptor GPR183 in inflammatory bowel diseases[J]. Br J Pharmacol 178(16):3140–3156

    Article  CAS  PubMed  Google Scholar 

  129. Kjaer V, Ieremias L, Daugvilaite V et al (2021) Discovery of GPR183 agonists based on an antagonist scaffold[J]. ChemMedChem

Download references

Funding

This work was supported by the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences [2020-RC320-003], the National Natural Science Foundation of China [Nos. 81972943, 81830097], Hunan Talent Young Investigator [No. 2019RS2012], Hunan Outstanding Young Investigator [No. 2020JJ2055], CAMS Innovation Fund for Medical Sciences (CIFMS) [2019-I2M-5–033], and Chongqing International Institute for Immunology [2020YJC10].

Author information

Authors and Affiliations

Authors

Contributions

PP C wrote the manuscript; M Y did the editing; C C, HJ W, and QJ L revised the manuscript.

Corresponding authors

Correspondence to Haijing Wu or Qianjin Lu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, P., Yang, M., Chang, C. et al. Germinal Center-Related G Protein-Coupled Receptors in Antibody-Mediated Autoimmune Skin Diseases: from Basic Research to Clinical Trials. Clinic Rev Allerg Immunol 63, 357–370 (2022). https://doi.org/10.1007/s12016-022-08936-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-022-08936-y

Keywords

Navigation