Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 15, 2021

Stochastic Modeling of Non-linear Terrorism Dynamics

  • Jakub Drmola ORCID logo EMAIL logo and Tomáš Hubík

Abstract

Modeling terrorism is both necessary and difficult. While the necessity comes from the all too obvious real-world pressures our society is facing, the difficulty stems from the underlying complexity of the phenomena itself – there are many variables to account for, they are hard to measure, and the relationships between them are confounding. Since modeling terrorism is at its most onerous when it comes to predicting specific attacks, their timing and scale, we opted to work around this using observed probabilistic distribution and integrate power laws into our system dynamics model. After evaluating thousands of simulations runs, this allows us to replicate historical data as well as produce prognostic scenarios, while maintaining what we believe to be authentic behavior. Compromises need to be made, but we believe that this approach can be useful for systems highly dependent on events or parameters which we are unable to predict but whose distributions are known.


Corresponding author: Jakub Drmola, Masaryk University, Brno, Czech Republic, E-mail:

Funding source: Strategic Support Program for Security Research in the Czech Republic, Ministry of the Interior http://dx.doi.org/10.13039/100009532

Award Identifier / Grant number: VJ01010122

Funding source: Charles University institutional funding http://dx.doi.org/10.13039/100007397

Award Identifier / Grant number: 260 453

  1. Research funding: This research was supported by the research grant “Resiliency of the armed forces and armed security corps to hybrid threats” (VJ01010122) financed by the Ministry of the Interior of the CR/Strategic Support Program for Security Research in the Czech Republic 2015–2020 (IMPAKT 1).

Appendix

List of Historical Attacks

Date Day n Killed Injured Casualties Perps Country Place
2007-06-30 180 0 2 0.2 2 United Kingdom Abbotsinch
2007-11-12 315 0 1 0.1 1 Switzerland Crissier
2008-12-31 730 0 2 0.2 1 Denmark Odense
2009-03-20 809 0 10 1 1 France Lyon
2009-06-01 882 1 1 1.1 1 USA Little Rock, AR
2009-10-12 1015 0 1 0.1 1 Italy Milan
2009-11-05 1039 13 32 16.2 1 USA Fort Hood, TX
2010-05-14 1229 0 1 0.1 1 United Kingdom London
2010-12-11 1440 0 2 0.2 1 Sweden Stockholm
2011-03-02 1521 2 2 2.2 1 Germany Frankfurt
2012-03-11 1896 1 0 1 1 France Toulouse
2012-03-12 1897 4 1 4.1 2 Belgium Brussels
2012-03-15 1900 3 0 3 1 France Montauban
2012-03-19 1904 4 0 4 1 France Toulouse
2012-07-18 2025 6 30 9 3 Bulgaria Burgas
2013-04-15 2296 3 264 29.4 2 USA Boston, MA
2013-05-22 2333 1 0 1 2 United Kingdom London
2013-05-25 2336 0 1 0.1 1 France Paris
2013-05-26 2337 0 2 0.2 3 United Kingdom Full Sutton
2013-11-18 2513 0 1 0.1 1 France Paris
2014-05-24 2700 4 0 4 1 Belgium Brussels
2014-09-24 2823 1 1 1.1 1 USA Moore, OK
2014-10-20 2849 1 1 1.1 1 Canada Saint -Jean -sur-Richelieu
2014-10-22 2851 1 3 1.3 1 Canada Ottawa
2014-10-23 2852 0 3 0.3 1 USA New York City
2014-12-15 2905 2 4 2.4 1 Australia Sydney
2014-12-20 2910 0 3 0.3 1 France Joue-Jes-Tours
2014-12-21 2911 0 11 1.1 1 France Dijon
2015-01-07 2928 17 19 18.9 3 France Paris
2015-02-03 2955 0 2 0.2 1 France Nice
2015-02-14 2966 2 5 2.5 1 Denmark Copenhagen
2015-04-19 3030 1 0 1 1 France Paris
2015-05-03 3044 0 1 0.1 2 USA Gariand, TX
2015-06-26 3098 1 2 1.2 1 France Saint-Quentin-Fallaveir
2015-07-16 3118 5 2 5.2 1 USA Chattanooga, TN
2015-08-21 3154 0 3 0.3 1 France Arras
2015-09-17 3181 0 1 0.1 1 Germany Berlin
2015-10-02 3196 1 0 1 1 Australia Parramatta
2015-11-04 3229 0 4 0.4 1 USA Merced, CA
2015-11-13 3238 128 129 140.9 9 France Paris
2015-12-02 3257 14 17 15.7 2 USA San Bernardino, CA
2015-12-05 3260 0 3 0.3 1 United Kingdom London
2016-01-01 3287 0 2 0.2 1 France Valence
2016-01-07 3293 0 1 0.1 1 France Paris
2016-02-11 3328 0 4 0.4 1 USA Columbus, OH
2016-02-26 3343 0 1 0.1 1 Germany Hanover
2016-03-22 3368 32 236 55.6 5 Belgium Brussels
2016-04-16 3393 0 3 0.3 3 Germany Essen
2016-06-12 3450 49 53 54.3 1 USA Orlando, FL
2016-06-13 3451 2 0 2 1 France Magnanville
2016-07-14 3482 85 303 115.3 1 France Nice
2016-07-18 3486 0 5 0.5 1 Germany Wurzburg
2016-07-24 3492 0 15 1.5 1 Germany Ansbach
2016-07-26 3494 1 1 1.1 2 France Normandy
2016-08-06 3505 0 2 0.2 1 France Charleroi
2016-08-19 3518 0 1 0.1 1 France Strasbourg
2016-08-30 3529 0 1 0.1 1 France Toulouse
2016-09-17 3547 0 39 3.9 2 USA NYC, NJ, MN
2016-10-05 3565 0 3 0.3 1 Belgium Brussels
2016-11-28 3619 0 13 1.3 1 USA Columbus, OH
2016-12-19 3640 12 49 16.9 1 Germany Berlin

Model Equations

{INITIALIZATION EQUATIONS}
: s Attack_Counter = 0
: s Directed_Terrorists = 0
: s Eliminated_Terrorists = 0
: c INITIAL_TOTAL_POPULATION = 885e6
: c BASE_SYMPATHIZERS_FRACTION = 0.0013
: c INITIAL_VISIBILITY = 0.05
: S Visibility = INITIAL_VISIBILITY
: c CAUSE_APPEAL = 1
: s Sympathizers = INITIAL_TOTAL_POPULATION*BASE_SYMPATHIZERS_FRACTION*Visibility* CAUSE_APPEAL
: c TERRORISTS_FRACTION = 0.0003
: s Inspired_Terrorists = Sympathizers*TERRORISTS_FRACTION
: s Total_Casualties = 0
: s Total_Population = INITIAL_TOTAL_POPULATION
: c ATTACK_SEED_D = RANDOM(0, 1000) + 25
: c ATTACK_SEED_I = RANDOM(0, 1000)
: c SCALE_SEED_D = ROUND(1/RANDOM(0, 1000)ˆ(1/2)*42)
: c SCALE_SEED_I = ROUND(1/RANDOM(0, 1000)ˆ(1/8)*7)-2
: c SEVERITY_SEED_D = RANDOM(0, 1)
: c SEVERITY_SEED_I = RANDOM(0, 1)
: c ENFORCEMENT_RESPONSE = 0.05
: c ATTACK_FREQUENCY_THRESHOLD = 990
: c COPYCAT_STRENGTH = 0.01
: c copycat_effect = Visibility*COPYCAT_STRENGTH
: c AT1 = 1
: c inspired_attack_scale = IF ATTACK_SEED_I>(ATTACK_FREQUENCY_THRESHOLD-copycat_effect*Inspired_Terrorists/SCALE_SEED_I) THEN MIN(SCALE_SEED_I, Inspired_Terrorists)/AT1 ELSE 0
: c directed_attack_scale = IF (ATTACK_SEED_D>ATTACK_FREQUENCY_THRESHOLD) THEN MIN(SCALE_SEED_D, Directed_Terrorists)/AT1 ELSE 0
: c regime_enforcement = SMTH3((inspired_attack_scale + directed_attack_scale)*ENFORCEMENT_RESPONSE, ENFORCEMENT_DELAY)
: c POLICY_RESPONSE = 0.1
: c regime_policies = SMTH3(POLICY_RESPONSE*Visibility, POLICY_DELAY)
: c VISIBILITY_PER_CASUALTIES = 1
: c HISTORICAL_CASUALTIES = TIME
: c SWITCH = 1
: c SCALING_EXPONENT = 2.02
: c CASUALTIES_PER_SEVERITY = 1
: c SEVERITY_PER_DIRECTED_TERRORIST = 9.8
: c directed_casualties = SEVERITY_PER_DIRECTED_TERRORIST*directed_attack_scale *CASUALTIES_PER_SEVERITY* (1/SEVERITY_SEED_D)ˆ(1/SCALING_EXPONENT)
: c SEVERITY_PER_INSPIRED_TERRORIST = 1.4
: c inspired_casualties = SEVERITY_PER_INSPIRED_TERRORIST*inspired_attack_scale *CASUALTIES_PER_SEVERITY* (1/SEVERITY_SEED_I)ˆ(1/SCALING_EXPONENT)
: f casualties_per_day = IF (SWITCH=9 AND TIME < 3653) THEN (HISTORICAL_CASUALTIES) ELSE (directed_casualties + inspired_casualties)
: c visibility_generated = casualties_per_day*VISIBILITY_PER_CASUALTIES
: c MAX_VIS = 1
: c AT_VIS = 90
: f change_in_visibility = MIN((MAX_VIS-Visibility)/AT1, (visibility_generated-Visibility) *(Visibility*(MAX_VIS-Visibility))/MAX_VISˆ2/AT_VIS)
: c AT_POP = 13*7
: f sympathizers_change = (CAUSE_APPEAL*Total_Population*Visibility*BASE_SYMPATHIZERS_FRACTION-Sympathizers)/AT_POP
: c GROWTH_RATE = 0.0022/365.25
: c population_growth = Total_Population*GROWTH_RATE
: f total_population_change = population_growth − casualties_per_day
: f attack_occurences = IF (casualties_per_day > 0) THEN 1 ELSE 0
: c ELIMINATIONS_PER_PERP = 0.8
: c INSERTION = STEP(21, 2920)–STEP(21, 2921) + (STEP(21, 624*7)–STEP(21, 624*7 + 1))*1
: f direction = IF SWITCH > 0 THEN INSERTION ELSE 0
: f directed_elimination = regime_enforcement*Directed_Terrorists/AT1 + directed_attack_scale*ELIMINATIONS_PER_PERP
: c PERSUASION = 4e-6
: c INS_AT = 1
: f inspiration = Sympathizers*Visibility*PERSUASION/(1 + regime_policies)/INS_AT
: f inspired_elimination = regime_enforcement*Inspired_Terrorists/AT1 + inspired_attack_scale*ELIMINATIONS_PER_PERP
: c ENFORCEMENT_DELAY = 365
: c POLICY_DELAY = 208*7
: c “S-VAR” = 0
{ RUNTIME EQUATIONS }
: s Attack_Counter(t) = Attack_Counter(t − dt) + (attack_occurences) * dt
: s Directed_Terrorists(t) = Directed_Terrorists(t − dt) + (direction − directed_elimination) * dt
: s Eliminated_Terrorists(t) = Eliminated_Terrorists(t − dt) + (directed_elimination + inspired_elimination) * dt
: S Visibility(t) = Visibility(t − dt) + (change_in_visibility) * dt
: s Sympathizers(t) = Sympathizers(t − dt) + (sympathizers_change − direction − inspiration) * dt
: s Inspired_Terrorists(t) = Inspired_Terrorists(t − dt) + (inspiration − inspired_elimination) * dt
: s Total_Casualties(t) = Total_Casualties(t − dt) + (casualties_per_day) * dt
: s Total_Population(t) = Total_Population(t − dt) + (total_population_change) * dt
: c ATTACK_SEED_D = RANDOM(0, 1000) + 25
: c ATTACK_SEED_I = RANDOM(0, 1000)
: c SCALE_SEED_D = ROUND(1/RANDOM(0, 1000)ˆ(1/2)*42)
: c SCALE_SEED_I = ROUND(1/RANDOM(0, 1000)ˆ(1/8)*7)-2
: c SEVERITY_SEED_D = RANDOM(0, 1)
: c SEVERITY_SEED_I = RANDOM(0, 1)
: c copycat_effect = Visibility*COPYCAT_STRENGTH
: c inspired_attack_scale = IF ATTACK_SEED_I>(ATTACK_FREQUENCY_THRESHOLD-copycat_effect*Inspired_Terrorists/SCALE_SEED_I) THEN MIN(SCALE_SEED_I, Inspired_Terrorists)/AT1 ELSE 0
: c directed_attack_scale = IF (ATTACK_SEED_D>ATTACK_FREQUENCY_THRESHOLD) THEN MIN(SCALE_SEED_D, Directed_Terrorists)/AT1 ELSE 0
: c regime_enforcement = SMTH3((inspired_attack_scale+directed_attack_scale)*ENFORCEMENT_RESPONSE, ENFORCEMENT_DELAY)
: c regime_policies = SMTH3(POLICY_RESPONSE*Visibility, POLICY_DELAY)
: c HISTORICAL_CASUALTIES = GRAPH(TIME)
: c directed_casualties = SEVERITY_PER_DIRECTED_TERRORIST*directed_attack_scale *CASUALTIES_PER_SEVERITY* (1/SEVERITY_SEED_D)ˆ(1/SCALING_EXPONENT)
: c inspired_casualties = SEVERITY_PER_INSPIRED_TERRORIST*inspired_attack_scale *CASUALTIES_PER_SEVERITY* (1/SEVERITY_SEED_I)ˆ(1/SCALING_EXPONENT)
: f casualties_per_day = IF (SWITCH = 9 AND TIME < 3653) THEN (HISTORICAL_CASUALTIES) ELSE (directed_casualties + inspired_casualties)
: c visibility_generated = casualties_per_day*VISIBILITY_PER_CASUALTIES
: f change_in_visibility = MIN((MAX_VIS-Visibility)/AT1, (visibility_generated-Visibility) *(Visibility*(MAX_VIS-Visibility))/MAX_VISˆ2/AT_VIS)
: c AT_POP = 13*7
: f sympathizers_change = (CAUSE_APPEAL*Total_Population*Visibility*BASE_SYMPATHIZERS_FRACTION-Sympathizers)/AT_POP
: c GROWTH_RATE = 0.0022/365.25
: c population_growth = Total_Population*GROWTH_RATE
: f total_population_change = population_growth − casualties_per_day
: f attack_occurences = IF (casualties_per_day > 0) THEN 1 ELSE 0
: c INSERTION = STEP(21, 2920)–STEP(21, 2921) + (STEP(21, 624*7)–STEP(21, 624*7 + 1))*1
: f direction = IF SWITCH>0 THEN INSERTION ELSE 0
: f directed_elimination = regime_enforcement*Directed_Terrorists/AT1 + directed_attack_scale*ELIMINATIONS_PER_PERP
: f inspiration = Sympathizers*Visibility*PERSUASION/(1 + regime_policies)/INS_AT
: f inspired_elimination = regime_enforcement*Inspired_Terrorists/AT1 + inspired_attack_scale*ELIMINATIONS_PER_PERP
: c POLICY_DELAY = 208*7
{ TIME SPECS }
STARTTIME = 0
STOPTIME = 3652
DT = 1
INTEGRATION = RK4
RUNMODE = NORMAL
PAUSEINTERVAL = 0

References

Bakker, E. 2012. Forecasting the Unpredictable: A Review of Forecasts on Terrorism 2000 - 2012. Hague: International Centre for Counter-Terrorism.10.19165/2012.1.06Search in Google Scholar

Barlas, Y. 2002. System Dynamics: Systemic Feedback Modeling for Policy Analysis. Also available at http://web.boun.edu.tr/ali.saysel/ESc59M/BarlasEOLSS.pdf.Search in Google Scholar

Bohorquez, J. C., S. Gourley, A. R. Dixon, M. Spagat, and N. F. Johnson. 2009. “Common Ecology Quantifies Human Insurgency.” Nature 462 (7275): 911–4, https://doi.org/10.1038/nature08631.Search in Google Scholar

Buchanan, M. 2008. “Laws, Power Laws and Statistics.” Nature Physics 4 (5): 339, https://doi.org/10.1038/nphys946.Search in Google Scholar

Callimachi, R. 2017. “Not ‘Lone Wolves’ After All: How ISIS Guides World’s Terror Plots From Afar.” The New York Times Feb 4, 2017.Search in Google Scholar

Chuang, Y., and M. R. D’Orsogna. 2019. “Mathematical Models of Radicalization and Terrorism.” ArXiv: Physics. Also available at http://arxiv.org/abs/1903.08485.Search in Google Scholar

Chucri, N., C. Electris, D. Goldsmith, D. Mistree, S. E. Madnick, J. B. Morrison, M. D. Siegel, and M. Sweitzer-Hamilton. 2006. “Understanding & Modeling State Stability: Exploiting System Dynamics.” Composite Information Systems Laboratory, MIT. Also available at http://web.mit.edu/smadnick/www/wp/2006-02.pdf.10.1109/AERO.2006.1656057Search in Google Scholar

Cioffi-Revilla, C. 2014. Introduction to Computational Social Science: Principles and Applications. New York: Springer. ISBN: 978-1-4471-5661-1.10.1007/978-1-4471-5661-1Search in Google Scholar

Clauset, A., M. Young, and K. S. Gleditsch. 2007. “On the Frequency of Severe Terrorist Events.” Journal of Conflict Resolution 51 (1): 58–87, https://doi.org/10.1177/0022002706296157.Search in Google Scholar

Clauset, A., and F. W. Wiegel. 2010. “A Generalized Aggregation-Disintegration Model for the Frequency of Severe Terrorist Attacks.” Journal of Conflict Resolution 54 (1): 179–97, https://doi.org/10.1177/0022002709352452.Search in Google Scholar

Clauset, A., and R. Woodard. 2013. “Estimating the Historical and Future Probabilities of Large Terrorist Events.” Annals of Applied Statistics 7 (4): 1838–65, https://doi.org/10.1214/13-aoas614r.Search in Google Scholar

Ellis, C., R. Pantucci, J. de Roy van Zuijdewijn, E. Bakker, B. Gomis, and S. Palombi. 2016. Lone-Actor Terrorism, 2397–0286. Royal United Services Institute.Search in Google Scholar

Farnham, N., and M. Liem. 2017. Can a Copycat Effect Be Observed in Terrorist Suicide Attacks? Hague: International Centre for Counter-Terrorism. ISSN: 2468-0656.Search in Google Scholar

Fellman, P. V., and R. Wright. 2004. “Modeling Terrorist Networks, Complex Systems at the Mid-range.” The Intelligencer 14 (2): 59–68.Search in Google Scholar

Gambo, A., and I. M. Olarewaju. 2020. “Mathematical Modeling of Dynamics Behavior of Terrorism and Control.” Caspian Journal of Mathematical Sciences 9 (1): 68–89. Also available at http://cjms.journals.umz.ac.ir/article_2476.html.Search in Google Scholar

Geller, D. S., and A. M. Saperstein. 2014. “A Dynamic Model of Suicide Terrorism and Political Mobilization.” International Political Science Review 36 (5): 562–77, https://doi.org/10.1177/0192512114527856.Search in Google Scholar

Hausken, K. 2020. “Governments Playing Games and Combating the Dynamics of a Terrorist Organization.” International Game Theory Review 23 (02): 1–26, 2050013, doi:https://doi.org/10.1142/s0219198920500139.Search in Google Scholar

Holmer, G., and A. Shtuni. 2017. Returning Foreign Fighters and the Reintegration Imperative. Washington, DC, United States Institute of Peace. ISBN 978-1-60127-650-6.Search in Google Scholar

Johnson, N. F., S. Carran, J. Botner, K. Fontaine, N. Laxague, P. Nuetzel, J. Turnley, and B. Tivnan. 2011. “Pattern in Escalations in Insurgent and Terrorist Activity.” Science 333 (6038): 81–3, doi:https://doi.org/10.1126/science.1205068.Search in Google Scholar

Kilcullen, D. 2017. “ISIS Caliphate’s Collapse Will Mean More Terror in Europe.” The Australian May 26, 2017.Search in Google Scholar

Kumamoto, S.-I., and T. Kamihigashi. 2018. “Power Laws in Stochastic Processes for Social Phenomena: An Introductory Review.” Frontiers in Physics 6, https://doi.org/10.3389/fphy.2018.00020.Search in Google Scholar

Lister, C. 2016. Returning Foreign Fighters. Doha: The Brookings Institution.Search in Google Scholar

Moreng, B. 2016. “ISIS’ Virtual Puppeteers.” Foreign Affairs Sep 21, 2016.Search in Google Scholar

Neumann, P. R. 2014. “Spotting the Threat.” New Scientist 223 (2976): 24–5, https://doi.org/10.1016/s0262-4079(14)61302-6.Search in Google Scholar

Newman, M. E. J. 2004. “Power Laws, Pareto Distributions and Zipf’s Law.” Contemporary Physics 46 (5): 323–51, https://doi.org/10.1542/peds.114.1.323.Search in Google Scholar

Pinto, C. M. A., A. M. Lopes, and J. A. T. Machado. 2012. “A Review of Power Laws in Real Life Phenomena.” Communications in Nonlinear Science and Numerical Simulation 17 (9): 3558–78, https://doi.org/10.1016/j.cnsns.2012.01.013.Search in Google Scholar

Pruyt, E., and J. H. Kwakkel. 2014. “Radicalization under Deep Uncertainty: a Multi-Model Exploration of Activism, Extremism, and Terrorism.” System Dynamics Review 30 (1): 1–28, https://doi.org/10.1002/sdr.1510.Search in Google Scholar

Reed, A., and J. Pohl. 2017. The Four Dimensions of the Foreign Fighter Threat: Making Sense of an Evolving Phenomenon, 2468–0486. Hague: The International Centre for Counter-Terrorism.10.19165/2017.2.01Search in Google Scholar

Richardson, L. F. 1948. “Variation of the Frequency of Fatal Quarrels with Magnitude.” Journal of the American Statistical Association 43 (144): 523–46, https://doi.org/10.1080/01621459.1948.10483278.Search in Google Scholar

Schmid, A. P. 2004. “Terrorism - The Definitional Problem.” Case Western Reserve Journal of International Law 36 (2): 375–419.Search in Google Scholar

Schmid, A. P. 2011. The Routledge Handbook of Terrorism Research. London and New York: Routledge. ISBN: 978-0415520997.10.4324/9780203828731Search in Google Scholar

Supriatna, A. K., H. Husniah, and A. R. Lanz. 2020. “The Effect of Proportional Recruitment in the Solution of a Terrorist Mathematical Model.” International Journal of Advanced Science and Technology 297 (s): 3802–8. Also available at http://sersc.org/journals/index.php/IJAST/article/view/17710.Search in Google Scholar

Telesca, L., and M. Lovallo. 2006. “Are Global Terrorist Attacks Time-Correlated?” Physica A: Statistical Mechanics and its Applications 362 (2): 480–4, https://doi.org/10.1016/j.physa.2005.08.030.Search in Google Scholar

Vidino, L., F. Marone, and E. Entemann. 2017. Fear Thy Neighbor. Hague: International Centre for Counter-Terrorism. ISBN: 9788867056194.Search in Google Scholar

Winter, C., and C. P. Clarke. 2017. “Is ISIS Breaking Apart?” Foreign Affairs, Jan 31, 2017.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/jhsem-2020-0029).


Received: 2020-06-09
Accepted: 2021-04-20
Published Online: 2021-09-15

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.5.2024 from https://www.degruyter.com/document/doi/10.1515/jhsem-2020-0029/html
Scroll to top button