Skip to main content
Original Article

Using Neuroimaging Techniques to Link Game Rewards to Memory Through Activity in the Hippocampus

Published Online:https://doi.org/10.1027/1864-1105/a000343

Abstract. The purpose of this study was to better understand effects of video game rewards on information processing using neuroimaging techniques. Excitation transfer theory, with the limited capacity model of motivated mediated messages, was used to predict that game rewards (administered through goal-directed spatial decision-making demands) will increase hippocampal activity. Activity will remain heightened in a subsequent declarative memory task. It was also predicted that heightened hippocampal activity during encoding will result in better recall after a 25-min delay. Both hypotheses were supported. Participants who played the goal-directed spatial decision-making game experienced greater hippocampal activation during the encoding phase of the memory task. And they demonstrated better recall for the encoded information after the delay. There was also a negative correlation between hippocampal activation and a primary inhibitory neurotransmitter, gamma-aminobutyric acid. These results suggest that goal-directed spatial decision-making mechanics can be important for facilitating hippocampal activation and declarative memory. They stress the need for future research to consider how these mechanics could be implemented in games for learning or as a potential intervention technique for those with memory impairments.

References

  • Adcock, R. A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B., & Gabrieli, J. D. (2006). Reward-motivated learning: Mesolimbic activation precedes memory formation. Neuron, 50, 507–517. https://doi.org/10.1016/jneuron.2006.03.036 First citation in articleCrossrefGoogle Scholar

  • Ambrée, O., Richter, H., Sachser, N., Lewejohann, L., Dere, E., de Souza Silva, M. A., Herring, A., Keyvani, K., Paulus, W., & Schäbitz, W. R. (2009). Levodopa ameliorates learning and memory deficits in a murine model of Alzheimer’s disease. Neurobiology of Aging, 30(8), 1192–1204. https://doi.org/10.1016/j.neurobiolaging.2007.11.010 First citation in articleCrossrefGoogle Scholar

  • Anderson, C. A., & Dill, K. E. (2000). Video games and aggressive thoughts, feelings, and behavior in the laboratory and in life. Journal of Personality and Social Psychology, 78, 772–790. https://doi.org/10.1037/0022-3514.78.4.772 First citation in articleCrossrefGoogle Scholar

  • Bethus, I., Tse, D., & Morris, R. G. (2010). Dopamine and memory: modulation of the persistence of memory for novel hippocampal NMDA receptor-dependent paired associates. The Journal of Neuroscience, 30(5), 1610–1618. https://doi.org/10.1523/JNEUROSCI.2721-09.2010 First citation in articleCrossrefGoogle Scholar

  • Blum, K., Oscar-Berman, M., Stuller, E., Miller, D., Giordano, J., Morse, S., McCormick, L., Downs, W. B., Waite, R. L., Barh, D., Neal, D., Braverman, E. R., Lohmann, R., Borsten, J., Hauser, M., Hauser, D., Han, D., Liu, Y., & Helman, M. (2012). Neurogenetics and nutrigenomics of neuro-nutrient therapy for reward deficiency syndrome (RDS): Clinical ramifications as a function of molecular neurobiological mechanisms. Journal of Addiction Research & Therapy, 3(5), Article 139. https://doi.org/10.4172/2155-6105.1000139 First citation in articleCrossrefGoogle Scholar

  • Breitenstein, C., Jansen, A., Deppe, M., Foerster, A. F., Sommer, J., Wolbers, T., & Knecht, S. (2005). Hippocampus activity differentiates good from poor learners of a novel lexicon. NeuroImage, 25, 958–968. https://doi.org/10.1016/j.neuroimage.2004.12.019 First citation in articleCrossrefGoogle Scholar

  • Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron, 68(5), 815–834. https://doi.org/10.1016/j.neuron.2010.11.022 First citation in articleCrossrefGoogle Scholar

  • Bryant, J., & Miron, D. (2003). Excitation-transfer theory and three-factor theory of emotion. In J. BryantD. Roskos-EwoldsenJ. CantorEds., Communication and emotion: Essays in honor of Dolf Zillmann (pp. 31–59). Lawrence Erlbaum Associates. First citation in articleGoogle Scholar

  • Chakrabarti, L., Best, T. K., Cramer, N. P., Carney, R. S. E., Isaac, J. T. R., Galdzicki, Z., & Haydar, T. F. (2010). Oglig1 and olig2 triplication causes development brain defects in Down syndrome. Nature Neuroscience, 13, 927–934. https://doi.org/10.1038/nn.2600 First citation in articleCrossrefGoogle Scholar

  • Clemenson, G. D., & Stark, C. E. L. (2015). Virtual environment enrichment through video games improves hippocampal-3associated memory. The Journal of Neuroscience, 35, 16116–16125. https://doi.org/10.1523/JNEUROSCI.2580-15.2015 First citation in articleCrossrefGoogle Scholar

  • Cummins, R. G. (2020). Excitation transfer theory. In J. Van den Bulk Ed., The international encyclopedia of media psychology (3rd ed.). https://doi.org/10.1002/9781119011071.iemp0055 First citation in articleCrossrefGoogle Scholar

  • de Lima, M. N., Luft, T., Roesler, R., & Schröder, N. (2006). Temporary inactivation reveals an essential role of the dorsal hippocampus in consolidation of object recognition memory. Neuroscience Letters, 405(1–2), 142–146). https://doi.org/10.1016/j.neulet.2006.06.044 First citation in articleCrossrefGoogle Scholar

  • DeMaster, D. M., & Ghetti, S. (2013). Developmental differences in hippocampal and cortical contributions to episodic retrieval. Cortex, 49(6), 1482–1493. First citation in articleCrossrefGoogle Scholar

  • Dreher, J. C., Kohn, P., & Berman, K. F. (2005). Neural coding of distinct statistical properties of reward information in humans. Cerebral Cortex, 16(4), 561–573. https://doi.org/10.1093/cercor/bhj004 First citation in articleCrossrefGoogle Scholar

  • Dydak, U., & Murdoch, J. (2017). LCModel basis sets. http://purcell.healthsciences.purdue.edu/mrslab/basis_sets.html First citation in articleGoogle Scholar

  • Fenker, D. B., Frey, J. U., Schuetze, H., Heipertz, D., Heinze, H. J., & Duzel, E. (2008). Novel scenes improve recollection and recall of words. Journal of Cognitive Neuroscience, 20(7), 1250–1265. https://doi.org/10.1162/jocn.2008.20086 First citation in articleCrossrefGoogle Scholar

  • Fisher, J. T., Huskey, R., Keene, J. R., & Weber, R. (2018). The limited capacity model of motivated mediated message processing: Looking to the future. Annals of the International Communication Association, 42(4), 291–315. https://doi.org/10.1080/23808985.2018.1534551 First citation in articleCrossrefGoogle Scholar

  • Gasbarri, A., & Pompili, A. (2014). The role of GABA in memory processes. In A. MensesEd., Identification of neural markers accompanying memory (pp. 47–62). Elsevier. First citation in articleCrossrefGoogle Scholar

  • Gruetter, R. (1993). Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magnetic Resonance in Medicine, 29(6), 804–811. https://doi.org/10.1002/m4m.1910290613 First citation in articleCrossrefGoogle Scholar

  • Gruetter, R., & Tkáč, I. (2000). Field mapping without reference scan using asymmetric echo-planar techniques. Magnetic Resonance in Medicine, 43(2), 319–323. https://doi.org/10.1002/(SICI)1522-2594(20002)43:2<319::AID-MRM22>3.0.CO;2-1 First citation in articleCrossrefGoogle Scholar

  • Gupta, R., Duff, M. C., Denburg, N. L., Cohen, N. J., Bechara, A., & Tranel, D. (2009). Declarative memory is critical for sustained advantageous complex decision making. Neuropsychologia, 47(7), 1686–1693. https://doi.org/10.1016/j.neuropsychologia.2009.02.007 First citation in articleCrossrefGoogle Scholar

  • Hollerman, J. R., & Schultz, W. (1998). Dopamine neurons report an error in the temporal prediction of reward during learning. Nature Neuroscience, 1(4), 305–309. https://doi.org/10.1038/1124 First citation in articleCrossrefGoogle Scholar

  • Huskey, R., Bue, A. C., Eden, A., Grall, C., Meshi, D., Prena, K., Schmälzle, R., Scholz, C., Turner, B. O., & Wilcox, S. (2020). Marr’s tri-level framework integrates biological explanation across communication subfields. Journal of Communication, 70(3), 356–378. https://doi.org/10.1093/joc/jqaa007 First citation in articleCrossrefGoogle Scholar

  • Kim, H., Shimojo, S., & O’Doherty, J. P. (2006). Is avoiding an aversive outcomes rewarding? Neural substrates of avoidance learning in the human brain. PLoS Biology, 4(8), Article e233. https://doi.org/10.1371/journal.pbio.0040233 First citation in articleCrossrefGoogle Scholar

  • King, D., Delfabbro, P., & Griffiths, M. (2010). Video game structural characteristics: A new psychological taxonomy. International Journal of Mental Health and Addiction, 8(1), 90–106. https://doi.org/10.1007/s11469-009-9206-4 First citation in articleCrossrefGoogle Scholar

  • Kleschevnikov, A. M., Belichenko, P. V., Villar, A. J., Epstein, C. J., Malenka, R. C., & Mobley, W. C. (2004). Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome. The Journal of Neuroscience, 24(37), 8153–8160. https://doi.org/10.1523/JNEUROSCI.1766-04.2004 First citation in articleCrossrefGoogle Scholar

  • Kühn, S., Becker, M., & Gallinat, J. (2018). 3-D navigation – A core driver of brain plasticity in video game interventions. bioRxiv, 453613. https://doi.org/10.1101/453613 First citation in articleGoogle Scholar

  • Kühn, S., Gallinat, J., & Mascherek, A. (2019). Effects of computer gaming on cognition, brain structure, and function: A critical reflection on existing literature. Dialogues in Clinical Neuroscience, 21(3), 319–330. https://doi.org/10.31887/DCNS.2019.21.3/skuehn First citation in articleCrossrefGoogle Scholar

  • Lang, A. (2006a). Motivated cognition (LC4MP): The influence of appetitive and aversive activation on the processing of video games. In P. MessarsisL. HumphriesEds., Digital media: Transformation in human communication (pp. 237–256). Peter Lang Publishing. First citation in articleGoogle Scholar

  • Lang, A. (2006b). Using the limited capacity model of motivated mediated message processing to design effective cancer communication messages. Journal of Communication, 56, S57–S80. https://doi.org/10.1111/j.1460-2466.2006.00283.x First citation in articleCrossrefGoogle Scholar

  • Lieberman, M. D., & Cunningham, W. A. (2009). Type I and Type II error concerns in fMRI research: Re-balancing the scale. Social Cognitive and Affective Neuroscience, 4(4), 423–428. https://doi.org/10.1093/scan/nsp052 First citation in articleCrossrefGoogle Scholar

  • Lisman, J., Grace, A. A., & Duzel, E. (2011). A neoHebbian framework for episodic memory; role of dopamine-dependent late LTP. Trends in Neurosciences, 34(10), 536–547. https://doi.org/10.1016/j.tins.2011.07.006 First citation in articleCrossrefGoogle Scholar

  • Luo, A. H., Tahsili-Fahadan, P., Wise, R. A., Lupica, C. R., & Aston-Jones, G. (2011). Linking context with reward: A functional circuit from hippocampal CA3 to ventral tegmental area. Science, 333(6040), 353–357. https://doi.org/10.1126/science.1204622 First citation in articleCrossrefGoogle Scholar

  • Mathiak, K. A., Klasen, M., Zvyagintsev, M., Weber, R., & Mathiak, K. (2013). Neural networks underlying affective states in a multimodal virtual environment: Contributions to boredom. Frontiers in Human Neuroscience, 7. https://doi.org/10.3389/fnhum.2013.00820 First citation in articleCrossrefGoogle Scholar

  • Miendlarzewska, E. A., Bavelier, D., & Schwartz, S. (2016). Influence of reward motivationon human declarative memory. Neuroscience & Biobehavioral Reviews, 61, 156–176. https://doi.org/10.1016/j.neubiorev.2015.11.015 First citation in articleCrossrefGoogle Scholar

  • Ostrovskaya, O., Xie, K., Masuho, I., Fajardo-Serrano, A., Lujan, R., Wickman, K., & Martemyanov, K. A. (2014). RGS7/Gβ5/R7BP complex regulates synaptic plasticity and memory by modulating hippocampal GABABR-GIRK signaling. Elife, 3, Article e02053. https://doi.org/10.7554/eLife.02053 First citation in articleCrossrefGoogle Scholar

  • Petersen, R. C., Jack, C. R., Xu, Y. C., Waring, S. C., O’Brien, P. C., Smith, G. E., Ivnik, R. J., Tangalos, E. G., Boeve, B. F., & Kokmen, E. (2000). Memory and MRI-based hippocampal volumes in aging and AD. Neurology, 54(3), Article 581. First citation in articleCrossrefGoogle Scholar

  • Pignatelli, M., & Bonci, A. (2015). Role of dopamine neurons in reward and aversion: A synaptic plasticity perspective. Neuron, 86(5), 1145–1157. https://doi.org/10.1016/j.neuron.2015.04.015 First citation in articleCrossrefGoogle Scholar

  • Pine, D. S., Grun, J., Maguire, E. A., Burgess, N., Zarahn, E., Koda, V., Fyer, A., Szeszko, P. R., & Bilder, R. M. (2002). Neurodevelopmental aspects of spatial navigation: A virtual reality fMRI study. NeuroImage, 15, 396–406. https://doi.org/10.1006/nimg.2001.0988 First citation in articleCrossrefGoogle Scholar

  • Prena, K., Cheng, H., & Newman, S. D. (2020). Hippocampal neurotransmitter inhibition suppressed during gaming explained by skill rather than gamer status. Frontiers in Human Neuroscience, Article 549. https://doi.org/10.3389/fnhum.2020.585764 First citation in articleCrossrefGoogle Scholar

  • Prena, K., Reed, A., Weaver, A. J., & Newman, S. D. (2018). Game mechanics matter: Differences in video game conditions influence memory performance. Communication Research Reports, 35(3), 222–231. https://doi.org/10.1080/08824096.2018.1428545 First citation in articleCrossrefGoogle Scholar

  • Prena Ellis, K. (2019). Setbacks and step ups: The effects of the setback punishment on declarative memory [Unpublished doctoral dissertation]. Indiana University. First citation in articleGoogle Scholar

  • Preuschoff, K., Bossaerts, P., & Quartz, S. R. (2006). Neural differentiation of expected reward and risk in human subcortical structures. Neuron, 51(3), 381–390. https://doi.org/10.1016/j.neuron.2006.06.024 First citation in articleCrossrefGoogle Scholar

  • Provencher, S. (2018, January 6). LCModel. http://www.sprovencher.com/lcmodel.shtml First citation in articleGoogle Scholar

  • Schmitz, T. W., Correia, M. M., Ferreira, C. S., Prescot, A. P., & Anderson, M. C. (2017). Hippocampal GABA enables inhibitory control over unwanted thoughts. Nature Communications, 8(1311). https://doi.org/10.1038/s41467-017-00956-z First citation in articleGoogle Scholar

  • Schomaker, J., & Wittmann, B. C. (2021). Effects of active exploration on novelty-related declarative memory enhancement. Neurobiology of Learning and Memory, 179, Article 107403. https://doi.org/10.1016/j.nlm.2021.107403 First citation in articleCrossrefGoogle Scholar

  • Sega. (2012). Sonic Adventure 2 (2012 Version for Windows) [Computer video game] [Steam]. First citation in articleGoogle Scholar

  • Shafer, D. M. (2014). Investigating suspense as a predictor of enjoyment in sports video games. Journal of Broadcasting & Electronic Media, 58(2), 272–288. https://doi.org/10.1080/08838151.2014.906432 First citation in articleCrossrefGoogle Scholar

  • Shen, H., Sabaliauskas, N., Yang, L., Aoki, C., & Smith, S. S. (2017). Role of α4-containing GABAA receptors in limiting synaptic plasticity and spatial learning of female mice during the pubertal period. Brain Research, 1654, 116–122. https://doi.org/10.1016/j.brainres.2016.01/020 First citation in articleCrossrefGoogle Scholar

  • Shigemune, Y., Tsukiura, T., Kambara, T., & Kawashima, R. (2014). Remembering with gains and losses: Effects of monetary reward and punishment on successful encoding activation of source memories. Cerebral Cortex, 24(5), 1319–1331. https://doi.org/10.1093/cercor/bhs415 First citation in articleCrossrefGoogle Scholar

  • Siarey, R. J., Kline-Burgess, A., Cho, M., Balbo, A., Best, T. K., Harashima, C., Klann, E., & Galdzicki, Z. (2006). Altered signaling pathways underlying abnormal hippocampal synaptic plasticity in the Ts65Dn mouse model of Down syndrome. Journal of Neurochemistry, 98(4), 1266–1277. https://doi.org/10.1111/j.1471-4159.2006.03971.x First citation in articleCrossrefGoogle Scholar

  • Siarey, R. J., Villar, A. J., Epstein, C. J., & Galdzicki, Z. (2005). Abnormal synaptic plasticity in the Ts1Cje segmental trisomy 16 mouse model of down syndrome. Neuropharmacology, 49(1), 122–128. https://doi.org/10.1016/j.neuropharm.2005.02.012 First citation in articleCrossrefGoogle Scholar

  • Squire, L. R., Knowlton, B., & Musen, G. (1993). The structure and organization of memory. Annual Review of Psychology, 44(1), 453–495. First citation in articleCrossrefGoogle Scholar

  • Stäubli, U., Scafidi, J., & Chun, D. (1999). GABAB receptor antagonism: Facilitatory effects on memory parallel those on LTP induced by TBS but not HFS. Journal of Neuroscience, 19(11), 4609–4615. https://doi.org/10.1523/JNEUROSCI.19-11-0409.1999 First citation in articleCrossrefGoogle Scholar

  • Twisted Tree Games. (2013). Proteus (Version for Windows) [Computer video game] [Steam]. First citation in articleGoogle Scholar

  • Viard, A., Doeller, C. F., Hartley, T., Bird, C. M., & Burgess, N. (2011). Anterior hippocampus and goal-directed spatial decision making. Journal of Neuroscience, 31(12), 4613–4621. https://doi.org/10.1523/JNEUROSCI.4640-10.2011 First citation in articleCrossrefGoogle Scholar

  • Vorderer, P., Hartmann, T., & Klimmt, C. (2003, May). Explaining the enjoyment of playing video games: The role of competition. Proceedings of the Second International Conference on Entertainment Computing (pp. 1–9). Carnegie Mellon University. First citation in articleGoogle Scholar

  • Wang, Z., & Lang, A. (2012). Reconceptualizing excitation transfer as motivational activation changes and a test of the television program context effects. Media Psychology, 15(1), 68–92. https://doi.org/10.1080/15213269.2011.649604 First citation in articleCrossrefGoogle Scholar

  • Weinstein, A. M. (2010). Computer and video game addiction – A comparison between game users and non-game users. The American Journal of Drug and Alcohol Abuse, 36, 268–276. https://doi.org/10.3109/00952990.2010.491879 First citation in articleCrossrefGoogle Scholar

  • Wellcome Centre for Human Neuroimaging. (2020). Statistical Parametric Mapping, SPM (Version 12) [Computer software]. https://www.fil.ion.ucl.ac.uk/spm/software/ First citation in articleGoogle Scholar

  • Wittmann, B. C., Schott, B. H., Guderian, S., Frey, J. U., Heinze, H. J., & Düzel, E. (2005). Reward-related fMRI activation of dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory formation. Neuron, 45(3), 459–467. https://doi.org/10.1016/j.neuron.2005.01.010 First citation in articleCrossrefGoogle Scholar

  • Yegiyan, N. S. (2015). Explicating the emotion spillover effect. Journal of Media Psychology, 27(3), 134–145. https://doi.org/10.1027/1864-1105/a000164 First citation in articleLinkGoogle Scholar

  • Zillmann, D. (1971). Excitation transfer in communication-mediated aggressive behavior. Journal of Experimental Social Psychology, 7, 419–434. https://doi.org/10.1016/0022-1031(71)90075-8 First citation in articleCrossrefGoogle Scholar

  • Zillmann, D., & Bryant, J. (1974). Effect of residual excitation on the emotional response to provocation and delayed aggressive behavior. Journal of Personality and Social Psychology, 30(6), 782–791. https://doi.org/10.1037/h0037541 First citation in articleCrossrefGoogle Scholar