Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) March 16, 2022

Crystal structure of 3,3′-(pyridine-2,6-diylbis(methylene))bis(1-propyl-1H-imidazol-3-ium) ditetrafluoroborate, C19H27B2F8N5

  • David O. Ywaya , Holger B. Friedrich , Muhammad D. Bala ORCID logo EMAIL logo , Lynette Soobramoney and Halliru Ibrahim

Abstract

C19H27N5, orthorhombic Pbca (no. 61), a = 9.8515(12) Å, b = 16.508(2) Å, c = 29.817(3) Å, β = 90°, V = 4849.3(10) Å3, Z = 8, R gt (F) = 0.0409, wRref(F2) = 0.1082.

CCDC no.: 2152011

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless plate
Size: 0.27 × 0.22 × 0.14 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.13 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θmax, completeness: 28.3°, >99%
N(hkl)measured, N(hkl)unique, Rint: 31,833, 5336, 0.029
Criterion for Iobs, N(hkl)gt: Iobs > 2 σ(Iobs), 4368
N(param)refined: 337
Programs: Bruker [1], Olex2 [2], SHELX [3, 4], WinGX/ORTEP [5]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
B1 0.74157 (17) 0.90551 (10) 0.74844 (6) 0.0234 (3)
B2 0.14461 (17) 0.69821 (10) 0.55973 (5) 0.0217 (3)
C1 0.4246 (2) 0.60186 (11) 0.81026 (6) 0.0438 (5)
H1A 0.376509 0.570499 0.787324 0.066*
H1B 0.370936 0.602651 0.837924 0.066*
H1C 0.513040 0.576852 0.816193 0.066*
C2 0.44571 (19) 0.68936 (10) 0.79347 (5) 0.0325 (4)
H2A 0.356204 0.713743 0.786725 0.039*
H2B 0.488354 0.721732 0.817608 0.039*
C3 0.53546 (18) 0.69356 (11) 0.75121 (6) 0.0339 (4)
H3A 0.626555 0.671674 0.758273 0.041*
H3B 0.546437 0.750852 0.742108 0.041*
C4 0.36837 (15) 0.67242 (9) 0.68566 (5) 0.0245 (3)
H4 0.324407 0.723604 0.686676 0.029*
C5 0.33921 (15) 0.60988 (9) 0.65713 (5) 0.0242 (3)
H5 0.272049 0.609724 0.634269 0.029*
C6 0.50776 (14) 0.56966 (9) 0.70181 (5) 0.0221 (3)
H6 0.576152 0.537467 0.715481 0.026*
C7 0.43525 (17) 0.46741 (9) 0.64459 (5) 0.0274 (3)
H7A 0.342503 0.448128 0.637558 0.033*
H7B 0.478197 0.427248 0.664749 0.033*
C8 0.51809 (15) 0.47322 (9) 0.60082 (5) 0.0212 (3)
C9 0.53983 (16) 0.40225 (9) 0.57566 (5) 0.0248 (3)
H9 0.502033 0.352030 0.584934 0.030*
C10 0.61881 (16) 0.40739 (9) 0.53645 (5) 0.0273 (3)
H10 0.636432 0.360443 0.518974 0.033*
C11 0.67140 (16) 0.48328 (9) 0.52351 (5) 0.0255 (3)
H11 0.725178 0.488521 0.497227 0.031*
C12 0.64225 (15) 0.55131 (9) 0.55054 (5) 0.0210 (3)
C13 0.69277 (16) 0.63536 (9) 0.53542 (5) 0.0246 (3)
H13A 0.644771 0.650911 0.507543 0.029*
H13B 0.790854 0.631921 0.528453 0.029*
C14 0.55351 (15) 0.73926 (9) 0.57695 (5) 0.0215 (3)
H14 0.472407 0.733089 0.560052 0.026*
C15 0.76584 (15) 0.72439 (9) 0.60168 (5) 0.0239 (3)
H15 0.856555 0.705588 0.604567 0.029*
C16 0.70346 (15) 0.78112 (9) 0.62814 (5) 0.0241 (3)
H16 0.742930 0.809464 0.652609 0.029*
C17 0.47043 (16) 0.85037 (10) 0.62913 (5) 0.0274 (3)
H17A 0.477677 0.854389 0.662170 0.033*
H17B 0.377324 0.832184 0.621726 0.033*
C18 0.49573 (18) 0.93455 (10) 0.60811 (6) 0.0307 (4)
H18A 0.434786 0.974469 0.622543 0.037*
H18B 0.590411 0.951156 0.614378 0.037*
C19 0.4719 (2) 0.93634 (11) 0.55697 (6) 0.0403 (4)
H19A 0.537253 0.900436 0.542170 0.060*
H19B 0.483904 0.991756 0.545865 0.060*
H19C 0.379434 0.917971 0.550384 0.060*
F1 0.77417 (12) 0.84260 (6) 0.77795 (4) 0.0493 (3)
F2 0.77939 (10) 0.98057 (6) 0.76741 (3) 0.0358 (2)
F3 0.60173 (10) 0.90432 (7) 0.74013 (5) 0.0522 (3)
F4 0.81231 (12) 0.89578 (7) 0.70765 (3) 0.0501 (3)
F5 0.03182 (10) 0.71304 (6) 0.53157 (3) 0.0353 (2)
F6Aa 0.1795 (2) 0.61542 (8) 0.55926 (5) 0.0403 (4)
F6Bb 0.2349 (12) 0.6372 (7) 0.5512 (3) 0.0344 (19)
F7Aa 0.11646 (18) 0.72291 (12) 0.60368 (4) 0.0418 (4)
F7Bb 0.0872 (12) 0.6873 (9) 0.6023 (3) 0.045 (3)
F8Aa 0.25513 (13) 0.74281 (11) 0.54236 (6) 0.0448 (5)
F8Bb 0.2284 (10) 0.7690 (5) 0.5625 (4) 0.0337 (18)
N1 0.47551 (13) 0.64657 (8) 0.71311 (4) 0.0232 (3)
N2 0.42655 (12) 0.54648 (7) 0.66793 (4) 0.0207 (3)
N3 0.56774 (12) 0.54712 (7) 0.58879 (4) 0.0214 (3)
N4 0.67120 (12) 0.69936 (7) 0.56968 (4) 0.0201 (3)
N5 0.57062 (12) 0.78936 (7) 0.61226 (4) 0.0205 (3)
  1. aOccupancy: 0.882 (4), bOccupancy: 0.118 (4).

Source of material

The title compound was prepared using a method described in the literature [6]. In a 50 mL round-bottom flask, N-propyl imidazole (1.0 mmol) and 2,6-bis(chloromethyl)pyridine (0.5 mmol) were gently stirred together under inert conditions. The temperature was gradually raised, and the neat molten mixture maintained at 60 °C for 16 h. The light brown crude solid that resulted was allowed to cool to room temperature before being loaded onto a short plug of silica gel. The unreacted starting materials were washed with EtOAc, and the product salt bearing dichloride counterions was obtained as an eluent of MeOH (100%). Removal of all volatiles under reduced pressure gave the bisimidazolium dichloride salt as clear viscous oil in excellent yield. Successively, anionic metathesis of the chloride salt was achieved by dropwise addition of saturated aqueous solution of NaBF4 (2.5 mol equiv.) to its methanolic solution. The resultant mixture was then stirred at room temperature for 20 h. At the end of the reaction time, the contents in the reaction flask were concentrated under vacuum and organics extracted with acetone (3 × 20 mL). Subsequent solvent removal afforded the title compound as a brown solid: yield 0.25 g (90%). Colorless single crystals suitable for X-ray analysis were obtained by layering the methanolic solution of the title compound with diethyl ether [7, 8]. 1 H NMR (CD3CN, 400 MHz) δ/ppm: 0.90 (t, J = 7.4 Hz, 2 × 3H, CH3); 1.87 (m, 2 × 2H, CH2); 4.26 (t, J = 7.2 Hz, 2 × 2H, CH2); 5.54 (s, 2 × 2H, CH2(lutidyl)); 7.46 (d, J = 1.5 Hz, 2 × 1H, CHlutidyl) 7.53 (d, J = 7.7 Hz, 2 × 1H, –CH=imidazolyl), 7.60 (t, J = 1.6 Hz, 2 × 1H, =CH–imidazolyl), 7.87 (t, J = 7.7 Hz, 1H, CHlutidyl); 9.83 (s, 2 × 1H, NCHNimidazolyl). 13 C NMR (CD3CN, 100.6 MHz) δ/ppm: 10.84 (CH3), 24.22 (CH2), 51.92(CH2), 54.19 (CH2(lutidyl)), 122.92, 123; 89, 124.10, 139.91, 154.57 (NCHN). HRMS-ES + : (m/z)/2: calcd for [(M – 2BF4)]/2 162.6128, found 162.6140.

Experimental details

Crystal evaluation was carried out using a Bruker APEX-II diffractometer [1] outfitted with an Oxford Cryostream low-temperature apparatus set to 104 K. The structure was solved with the ShelXT [3] structure solution program using Intrinsic Phasing and refined with the ShelXL [4] refinement package. Uiso was fixed at 1.2 times of C(H) and C(H, H) groups and at 1.5 times of C(H, H, H) group and secondary CH2 and aromatic H were refined with riding coordinates. Methyl was idealized and refined as a rotating group. The visual crystal structure information was performed using ORTEP-3 [5].

Comment

When adequately constituted, the title compound can be a convenient source of ionic liquid (IL) solvents [7, 8]; it is also a credible alternative to phosphines in organometallic chemistry and catalysis [9]. More importantly, when combined with metal ions, the complexes have been used as catalysts in various applications [1012].

The title structure is composed of one cationic pyridine bridged bis-imidazole core and two tetrafluoroborate anions occupying the asymmetric unit. Both imidazole units in the title structure are almost perpendicular to the plane of the central pyridine unit, and the imidazole C-2 protons are directed well away from each other. The internal ring angle of imidazole (N–C–N) is 108.35(13) for N1–C6–N2 and 108.47(12) for N4–C14–N5, which are well within the range for related imidazole-based salts [13, 14]. A series of weak C–H···F hydrogen bonding interactions between the counterions and the core salt, which were observed in the extended structure of the compound, stabilized the crystal packing.


Corresponding author: Muhammad D. Bala, School of Chemistry, University of Kwazulu-Natal, Private Bag X54001, Durban 4001, South Africa, E-mail:

Funding source: NRF

Funding source: SASOL

Acknowledgment

Mr. Sizwe J. Zamisa is acknowledged for crystal data collection and refinement.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study received post-doctoral fellowships from NRF (LS) and SASOL (HI).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX2; Bruker AXS Inc: Madison, WI, USA, 2008.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

4. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

5. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

6. Ibrahim, H., Bala, M. D. Improved methods for the synthesis and isolation of imidazolium based ionic salts. Tetrahedron Lett. 2014, 55, 6351–6353; https://doi.org/10.1016/j.tetlet.2014.09.116.Search in Google Scholar

7. Aher, S. B., Bhagat, P. R. Convenient synthesis of imidazolium based dicationic ionic liquids. Res. Chem. Intermed. 2016, 42, 5587–5596; https://doi.org/10.1007/s11164-015-2388-4.Search in Google Scholar

8. Naya, L., Vázquez-García, D., Fernández, A., Lõpez-Torres, M., Ojea, V., Marcos, I., Vila, J. M., Fernández, J. J. Preparation of imidazol-2-ylidene carbene palladacycles with bi- and tridentate Schiff bases – analyses of the spectroscopic, molecular structure, and DFT calculation data. Eur. J. Inorg. Chem. 2016, 2016, 422–431; https://doi.org/10.1002/ejic.201501067.Search in Google Scholar

9. Herrmann, W. A., Munck, F. C., Artus, G. R. J., Runte, O., Anwander, R. 3-Dimethylimidazolin-2-ylidene carbene donor ligation in lanthanide silylamide complexes. Organometallics 1997, 16, 682–688; https://doi.org/10.1021/om9607715.Search in Google Scholar

10. Melaiye, A., Simons, R. S., Milsted, A., Pingitore, F., Wesdemiotis, C., Tessier, C. A., Youngs, W. J. Formation of water-soluble pincer silver(I)-carbene complexes: a novel antimicrobial agent. J. Med. Chem. 2004, 47, 973–977; https://doi.org/10.1021/jm030262m.Search in Google Scholar

11. Ibrahim, H., Bala, M. D. Air stable pincer (CNC) N-heterocyclic carbene–cobalt complexes and their application as catalysts for C–N coupling reactions. J. Organomet. Chem. 2015, 794, 301–310; https://doi.org/10.1016/j.jorganchem.2015.07.015.Search in Google Scholar

12. Pugh, D., Danopoulos, A. A. Metal complexes with ‘pincer’-type ligands incorporating N-heterocyclic carbene functionalities. Coord. Chem. Rev. 2007, 251, 610–641; https://doi.org/10.1016/j.ccr.2006.08.001.Search in Google Scholar

13. Budagumpi, S., Haque, R. A., Salman, A. W., Ghdhayeb, M. Z. Mercury(II)- and silver(I)-N-heterocyclic carbene complexes of CNC pincer-type ligands: synthesis, crystal structures and Hofmann-type elimination studies. Inorg. Chim. Acta. 2012, 392, 61–72; https://doi.org/10.1016/j.ica.2012.06.044.Search in Google Scholar

14. Naziruddin, A. R., Kuo, C.-L., Lin, W.-J., Lo, W.-H., Lee, C.-S., Sun, B.-J., Chang, A. H. H., Hwang, W.-S. Ruthenium complexes bearing unsymmetric CNC-pincer ligands: molecular structures and electronic properties. Organometallics 2014, 33, 2575–2582; https://doi.org/10.1021/om500205p.Search in Google Scholar

Received: 2022-02-17
Accepted: 2022-03-03
Published Online: 2022-03-16
Published in Print: 2022-06-27

© 2022 David O. Ywaya et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 22.5.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2022-0078/html
Scroll to top button