Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) April 4, 2022

Crystal structure of dimethyl 1,4,6,9-tetraphenylhexahydro-3H-2,7,3,5-(epimethanetriyliminomethanetriyl)cyclopenta[b]pyridine-3,7(2H)-dicarboxylate, C38H34N2O4

  • Yin-Xin Wang ORCID logo , Si-Qi Geng , Jia-Rui Qin , Wen-Li Zhang EMAIL logo and Qi-Di Zhong

Abstract

C38H34N2O4, triclinic, P 1 (no. 2), a = 11.1158(19) Å, b = 11.302(2) Å, c = 12.634(2) Å, α = 72.109(2)°, β = 77.410(2)°, γ = 82.648(3)°, V = 1362.4(5) Å3, Z = 2, R gt (F) = 0.0473, wR ref (F2) = 0.1738, T = 296 K.

CCDC no.: 2143423

The molecular structure is shown in Figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colourless block
Size: 0.18 × 0.16 × 0.15 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.09 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θmax, completeness: 27.5°, 99%
N(hkl)measured, N(hkl)unique, Rint: 9220, 6596, 0.016
Criterion for Iobs, N(hkl)gt: Iobs > 2σ(Iobs), 5121
N(param)refined: 399
Programs: Bruker [1], SHELX [2, 3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z Uiso*/Ueq
O1 0.43060 (10) 0.33694 (12) 0.25888 (11) 0.0486 (3)
O2 0.41268 (10) 0.44641 (12) 0.38234 (10) 0.0492 (3)
O3 1.07900 (12) 0.56210 (16) 0.16452 (12) 0.0692 (5)
O4 0.98680 (11) 0.54287 (13) 0.34253 (10) 0.0536 (4)
N1 0.71403 (11) 0.63020 (11) 0.21005 (10) 0.0307 (3)
N2 0.74671 (10) 0.30828 (11) 0.35398 (10) 0.0302 (3)
C1 1.04233 (16) 0.17146 (17) 0.15810 (18) 0.0514 (5)
H1 1.030837 0.194130 0.083546 0.062*
C2 1.11000 (19) 0.06188 (19) 0.1988 (2) 0.0656 (6)
H2 1.142688 0.011300 0.152270 0.079*
C3 1.12887 (18) 0.0278 (2) 0.3081 (2) 0.0717 (7)
H3 1.174450 −0.045941 0.336023 0.086*
C4 1.07979 (17) 0.1037 (2) 0.3770 (2) 0.0623 (6)
H4 1.092537 0.080719 0.451179 0.075*
C5 1.01157 (15) 0.21393 (18) 0.33553 (16) 0.0491 (4)
H5 0.979509 0.264685 0.382042 0.059*
C6 0.99089 (13) 0.24892 (15) 0.22523 (14) 0.0396 (4)
C7 0.92002 (13) 0.36777 (14) 0.17107 (12) 0.0348 (3)
H7 0.972447 0.405381 0.097995 0.042*
C8 0.88342 (12) 0.47221 (14) 0.22896 (12) 0.0319 (3)
C9 0.81264 (13) 0.57168 (14) 0.14110 (11) 0.0324 (3)
H9 0.867530 0.632637 0.085875 0.039*
C10 0.75604 (13) 0.49305 (15) 0.08349 (12) 0.0345 (3)
H10 0.785948 0.514756 0.001409 0.041*
C11 0.79379 (13) 0.35783 (14) 0.14407 (12) 0.0337 (3)
H11 0.798609 0.302025 0.097085 0.040*
C12 0.69248 (12) 0.32287 (13) 0.25424 (11) 0.0306 (3)
H12 0.650261 0.249372 0.260418 0.037*
C13 0.60202 (12) 0.44331 (13) 0.24500 (11) 0.0299 (3)
C14 0.66390 (12) 0.52218 (13) 0.29893 (11) 0.0284 (3)
H14 0.607939 0.544653 0.362330 0.034*
C15 0.77867 (12) 0.43449 (13) 0.33603 (11) 0.0289 (3)
H15 0.800076 0.445776 0.403415 0.035*
C16 0.74712 (13) 0.73169 (13) 0.23860 (12) 0.0322 (3)
C17 0.73080 (15) 0.73823 (16) 0.34895 (14) 0.0416 (4)
H17 0.696713 0.673274 0.409280 0.050*
C18 0.76563 (18) 0.84230 (18) 0.36893 (16) 0.0548 (5)
H18 0.753605 0.846053 0.443050 0.066*
C19 0.81710 (17) 0.93929 (18) 0.28242 (17) 0.0558 (5)
H19 0.841967 1.007025 0.297458 0.067*
C20 0.83132 (18) 0.93455 (17) 0.17267 (17) 0.0546 (5)
H20 0.865425 1.000005 0.112908 0.065*
C21 0.79526 (16) 0.83324 (16) 0.15077 (14) 0.0454 (4)
H21 0.803199 0.832644 0.076115 0.054*
C22 0.61473 (13) 0.50144 (14) 0.11513 (12) 0.0337 (3)
H22 0.585652 0.441173 0.086356 0.040*
C23 0.54602 (15) 0.62529 (15) 0.07012 (13) 0.0390 (4)
C24 0.60661 (18) 0.72672 (19) −0.00652 (17) 0.0575 (5)
H24 0.691986 0.719685 −0.029116 0.069*
C25 0.5418 (2) 0.8377 (2) −0.0495 (2) 0.0786 (7)
H25 0.584379 0.904547 −0.099898 0.094*
C26 0.4155 (2) 0.8509 (2) −0.0191 (2) 0.0747 (7)
H26 0.372717 0.926176 −0.047961 0.090*
C27 0.3534 (2) 0.7514 (2) 0.05451 (18) 0.0615 (5)
H27 0.267785 0.758896 0.075170 0.074*
C28 0.41778 (16) 0.63963 (18) 0.09822 (14) 0.0470 (4)
H28 0.374321 0.572757 0.147426 0.056*
C29 0.68045 (12) 0.24302 (13) 0.46162 (12) 0.0292 (3)
C30 0.65222 (14) 0.29058 (15) 0.55398 (13) 0.0376 (3)
H30 0.675482 0.369469 0.546073 0.045*
C31 0.58983 (16) 0.22175 (18) 0.65769 (14) 0.0476 (4)
H31 0.572065 0.254901 0.718665 0.057*
C32 0.55378 (16) 0.10502 (18) 0.67175 (15) 0.0500 (4)
H32 0.510939 0.059688 0.741309 0.060*
C33 0.58199 (16) 0.05666 (16) 0.58164 (16) 0.0488 (4)
H33 0.558509 −0.022423 0.590529 0.059*
C34 0.64494 (15) 0.12373 (15) 0.47752 (14) 0.0406 (4)
H34 0.663776 0.088962 0.417553 0.049*
C35 0.30507 (16) 0.3035 (2) 0.30004 (18) 0.0573 (5)
H35A 0.250371 0.373478 0.271723 0.086*
H35B 0.288198 0.279568 0.381335 0.086*
H35C 0.292657 0.234958 0.274590 0.086*
C36 0.47204 (13) 0.41176 (14) 0.30550 (12) 0.0328 (3)
C37 1.0814 (2) 0.6115 (3) 0.3553 (2) 0.0775 (7)
H37A 1.160365 0.566957 0.343338 0.116*
H37B 1.063779 0.620733 0.430278 0.116*
H37C 1.082978 0.692274 0.300708 0.116*
C38 0.99411 (14) 0.52876 (15) 0.24132 (13) 0.0377 (3)

Source of material

Preparation of the 1,4-diaryl-1,4-dihydropyridine-3-carboxylic acid photoreactive raw materials was performed by a literature method [4]: aniline (0.5 mmol), ethyl propiolate (0.5 mmol) and 4-methylcinnamaldehyde (0.5 mmol); piperazine (0.25 mmol) and p-toluenesulfonic acid (0.02 mmol) used as catalysts, and 20 mL of 1,2-dichloroethane (20 mL) were mixed. The mixture was heated to reflux for 12 h to obtain 1-phenyl-4-(4-methyl-phenyl)-1,4-dihydroethylpyridine-3-carboxylate. The 1-phenyl-4-(4-methyl-phenyl)-1,4-dihydroethylpyridine-3-carboxylate (0.5 mmol) obtained in the first step was placed near a blue LED (365 nm) for a photoreaction for 3 h [5]. The product was obtained by column chromatography eluting with petroleum ether and ethyl acetate 10:1. The resulting solution was evaporated to get some colorless crystals.

Experimental details

All hydrogen atoms were placed in the calculated positions.

Comment

Cage dimer 4-aryl-1,4-dihydropyridines have a wide range of biological activities, such as anti-HIV and as an antimultidrug resistance modulator [6], [7], [8]. The caged dimeric compound similar to the title compound has also been reported, which is obtained by a dimerization by photoreaction. However, the two pyridine rings in the title compound present a special angle, which may be of interest for the study of new functional caged compounds.

In the molecules forming the title crystal structure, the tricyclic structure formed by oxazinoquinoline structure is not in one plane. The dihedral angle of the phenyl ring formed by C23–28 and the phenyl ring formed by C6–C1 is 57°. The dihedral angle between the phenyl ring formed by C16–18 and the phenyl ring formed by C29–34 is 33.322 Å, close to a right angle. Several important bond angle data are involved as follows C2–C1–C6 = 121.9(2) Å, C36–O1–C35 = 117.56(13) Å, C16–N1–C14 = 120.10(11) Å. The bond lengths and angles are in the expected ranges [9, 10].


Corresponding author: Wen-Li Zhang, Comprehensive Testing and Analytical Center, North China University of Science and Technology, 063210 Caofeidian District, Tangshan, P. R. China, E-mail:

Funding source: Hebei Provincial Natural Science Foundation of China

Award Identifier / Grant number: C2020209081

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work is supported by The Project Supported by Hebei Provincial Natural Science Foundation of China (C2020209081).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. BRUKER. SAINT. Version 8.23B; Bruker AXS Inc.: Madison, Wisconsin, USA, 2013.Search in Google Scholar

2. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

3. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

4. Wan, J. P., Lin, Y. F., Jing, Y. F. Selectivity tunable divergent synthesisof 1,4-and 1,2-dihydropyridines via three-component reactions. Tetrahedron 2014, 70, 7874–7880; https://doi.org/10.1016/j.tet.2014.09.002.Search in Google Scholar

5. Hilgeroth, A., Baumeister, U., Heinemann, F. W. Solution dimerization of 4-ary-1,4-dihydropyridines. Eur. J. Org Chem. 2000, 2000, 245–249; https://doi.org/10.1002/(sici)1099-0690(200001)2000:2<245::aid-ejoc245>3.0.co;2-2.10.1002/(SICI)1099-0690(200001)2000:2<245::AID-EJOC245>3.0.CO;2-2Search in Google Scholar

6. Hilgeroth, A., Langner, A. First bioanalytical evaluation of nonpeptidic cage dimeric HIV-1 protease inhibitor N-benzyl 4-aryl-1,4-dihydropyridine H17: biotransformation and toxicity on Hep G2 cells. Arch. Pharm. 2000, 333, 32–34; https://doi.org/10.1002/(sici)1521-4184(200001)333:1<32::aid-ardp32>3.0.co;2-q.10.1002/(SICI)1521-4184(200001)333:1<32::AID-ARDP32>3.0.CO;2-QSearch in Google Scholar

7. Hilgeroth, A., Billich, A. Cage dimeric 4-aryl-1,4-dihydropyridines as promising lead structures for the development of a novel class of HIV-1 protease inhibitors. Arch. Pharm. 1999, 332, 3–5; https://doi.org/10.1002/(sici)1521-4184(19991)332:1<3::aid-ardp3>3.0.co;2-1.10.1002/(SICI)1521-4184(19991)332:1<3::AID-ARDP3>3.0.CO;2-1Search in Google Scholar

8. Coburger, C., Wollmann, J., Krug, M., Baumert, C., Seifert, M., Molnar, J., Lage, H., Hilgeroth, A. Novel structure-activity relationships and selectivity profiling of cage dimeric 1,4-dihydropyridines as multidrug resistance (MDR) modulators. Bioorg. Med. Chem. 2010, 18, 4983–4990; https://doi.org/10.1016/j.bmc.2010.06.004.Search in Google Scholar

9. Hilgeroth, A., Baumeister, U. The first functionalized 6,12-diazatetrakishomocubanes. Angew. Chem. Int. Ed. 2000, 39, 576–578; https://doi.org/10.1002/(sici)1521-3773(20000204)39:3<576::aid-anie576>3.0.co;2-g.10.1002/(SICI)1521-3773(20000204)39:3<576::AID-ANIE576>3.0.CO;2-GSearch in Google Scholar

10. Wang, X., Zhang, D., Zhuang, P., Zhang, Y., Xu, J. Crystal structure of 3,10-bis(4-chlorophenyl)-6,12-dibenzyl-2,9-acetyl-6,12-diazapentacyclo [6.3.1.02,7.04,11.05,9]-dodecane, C40H36Cl2N2O2. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 587–588; https://doi.org/10.1515/ncrs-2019-0834.Search in Google Scholar

Received: 2022-01-21
Accepted: 2022-03-11
Published Online: 2022-04-04
Published in Print: 2022-06-27

© 2022 Yin-Xin Wang et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 16.5.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2022-0038/html
Scroll to top button