Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) March 22, 2022

The crystal structure of (Z)-4-bromo-6-(((1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)amino)methylene)cyclohexa-2,4-dien-1-one monohydrate, C11H16BrNO5

  • Hai-Bo Qin , Ke-Xiang Liu , Xu Fan , Zhong-Yan Li EMAIL logo and Lin Yuan ORCID logo EMAIL logo

Abstract

C11H16BrNO5, monoclinic, P21/c (no. 14), a = 15.164(7) Å, b = 11.798(5) Å, c = 7.359(3) Å, β = 90.792°, V = 1316.4(10) Å3, Z = 4, R gt (F) = 0.0322, wR ref (F 2) = 0.0797, T = 296(2) K.

CCDC no.: 2157651

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Yellow block
Size: 0.40 × 0.36 × 0.30 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 3.14 mm−1
Diffractometer, scan mode: Bruker APEX-II, φ and ω
θ max, completeness: 27.5°, >99%
N(hkl)measured, N(hkl)unique, R int: 14,460, 2974, 0.026
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 2400
N(param)refined: 169
Programs: Bruker [1], SHELX [2, 3]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
Br1 0.85816 (2) 0.21106 (3) 0.04114 (4) 0.05558 (12)
C1 1.12451 (14) 0.21342 (18) 0.1810 (3) 0.0316 (4)
O2 1.43527 (12) 0.22951 (14) 0.3232 (3) 0.0513 (5)
H2 1.483797 0.225630 0.275730 0.077*
O4 1.37491 (11) −0.11326 (13) 0.4182 (2) 0.0423 (4)
H4 1.369792 −0.172813 0.361542 0.063*
O3 1.31134 (12) −0.01634 (14) −0.0275 (2) 0.0448 (4)
H3 1.287561 0.031911 −0.091665 0.067*
O1 1.22465 (11) 0.36110 (13) 0.2597 (2) 0.0424 (4)
N1 1.26999 (11) 0.14885 (15) 0.2515 (2) 0.0309 (4)
H1 1.283343 0.218463 0.273074 0.037*
C5 0.97406 (14) 0.2590 (2) 0.1071 (3) 0.0372 (5)
C2 1.14633 (15) 0.33010 (19) 0.2115 (3) 0.0338 (5)
O5 1.38540 (13) −0.18430 (14) 0.7675 (2) 0.0454 (4)
H5A 1.362167 −0.134469 0.835257 0.068*
H5B 1.376889 −0.166396 0.656646 0.068*
C7 1.18961 (14) 0.12808 (18) 0.2029 (3) 0.0337 (5)
H7 1.173491 0.053201 0.181030 0.040*
C8 1.34078 (13) 0.06529 (17) 0.2737 (3) 0.0302 (4)
C6 1.03874 (14) 0.1801 (2) 0.1293 (3) 0.0355 (5)
H6 1.026180 0.103875 0.110268 0.043*
C3 1.07591 (17) 0.4086 (2) 0.1847 (3) 0.0433 (6)
H3A 1.086551 0.485563 0.201557 0.052*
C11 1.30454 (15) −0.03947 (19) 0.3700 (3) 0.0372 (5)
H11A 1.273483 −0.016588 0.478326 0.045*
H11B 1.263163 −0.078578 0.290220 0.045*
C9 1.41180 (15) 0.1213 (2) 0.3926 (3) 0.0413 (5)
H9A 1.390156 0.129727 0.515326 0.050*
H9B 1.463637 0.073173 0.397594 0.050*
C4 0.99268 (16) 0.3734 (2) 0.1347 (3) 0.0437 (6)
H4A 0.948079 0.426755 0.119081 0.052*
C10 1.37661 (15) 0.0359 (2) 0.0861 (3) 0.0385 (5)
H10A 1.397303 0.104618 0.028085 0.046*
H10B 1.426498 −0.014919 0.100265 0.046*

Source of material

5-Bromosalicylaldehyde (1.01 g, 5 mmol), tris(hydroxymethyl)methyl aminomethane (0.67 g, 5.5 mmol) and ethanol (15 mL) were heated and stirred at 373 K for 8 h, then cooled to room temperature; then the product was filtered off and recrystallized from ethanol to afford yellow crystals (1.28 g, yield 89%).

Experimental details

All hydrogen atoms were identified in difference Fourier syntheses. The U iso values of the hydrogen atoms of methyl groups and amino group were set to 1.5U eq (C) and the U iso values of all other hydrogen atoms were set to 1.2U eq (C).

Comment

Schiff bases have a wide range of applications in catalysis, medicine, functional materials and corrosion resistance [4], [5], [6]. In recent years, salicylaldehyde Schiff base compounds have attracted extensive attention due to their unique structure and properties [7], [8], [9], [10], [11].

The structure of the target molecule without a water molecule had been reported [12]. The asymmetric unit of the title structure contains one target molecule and one water molecule. It can be clearly observed that the title molecule exists in a keto form in the structure. The NH group of the enamine moiety participates in an intramolecular N–H···O hydrogen bond (N1···O1 = 2.598 Å) to the oxygen atom of the keto group. The OH group of the TRIS moiety is involved in a OH···O hydrogen bond (O3···O1′ = 2.735 Å; ′ = x, −y+1/2, z1/2). The water molecule donates in total two hydrogen bonds to two title target molecules (O5···O4 = 2.639 Å; O5···O2″ = 2.859 Å; ″ = −x+3, −y, −z+1).


Corresponding authors: Zhong-Yan Li and Lin Yuan, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, P. R. China, E-mail: (Z.-Y. Li), (L. Yuan)

Award Identifier / Grant number: 2021JJ30291

Funding source: Scientific Research Fund of Hunan Provincial Education Department

Award Identifier / Grant number: 21A0518

Award Identifier / Grant number: 21C0691

Funding source: Undergraduate Training Program for Innovation and Entrepreneurship of Hunan Province of China

Award Identifier / Grant number: [2021]197-3585

Funding source: Undergraduate Training Program for Innovation and Entrepreneurship of Hunan University of Science and Engineering

Award Identifier / Grant number: 2021

Funding source: Yongzhou Guiding Science and Technology Plan

Award Identifier / Grant number: 2021

Funding source: Hunan University of Science and Engineering

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was financially supported by Natural Science Foundation of Hunan Province of China (2021JJ30291), the Scientific Research Fund of Hunan Provincial Education Department (21A0518, 21C0691), Undergraduate Training Program for Innovation and Entrepreneurship of Hunan Province of China ([2021]197-3585), Undergraduate Training Program for Innovation and Entrepreneurship of Hunan University of Science and Engineering (2021), Yongzhou Guiding Science and Technology Plan (2021), the construct program of applied characteristic discipline in Hunan University of Science and Engineering.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. APEX3, SAINT-Plus, XPREP; Bruker AXS Inc: Madison, Wisconsin, USA, 2016.Search in Google Scholar

2. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Yuan, L., Li, Y. D., Fan, X., Li, Z. Y. The crystal structure of (E)-2-((tert-butylimino)methyl)-4-chlorophenol, C11H14ClNO. Z. Kristallogr. N. Cryst. Struct. 2021, 232, 1317–1318; https://doi.org/10.1515/ncrs-2021-0323.Search in Google Scholar

5. Wang, S., Wu, B., Liu, F., Gao, Y., Zhang, W. A well-defined alternating copolymer based on a salicylaldimine Schiff base for highly sensitive zinc(II) detection and pH sensing in aqueous solution. Polym. Chem. 2015, 6, 1127–1136; https://doi.org/10.1039/c4py01298d.Search in Google Scholar

6. Jiang, S., Ni, H., Liu, F., Gu, S., Yu, P., Gou, Y. Binuclear Schiff base copper(II) complexes: syntheses, crystal structures, HSA interaction and anti-cancer properties. Inorg. Chim. Acta 2020, 499, 119186; https://doi.org/10.1016/j.ica.2019.119186.Search in Google Scholar

7. Li, Z.-Y., Jia, G.-K., Yuan, L., Bai, P.-F., He, H., Zhou, Q. Syntheses, crystal structures and biological activities of three new Schiff bases derived from substituted salicylaldehyde and tris base. Chin. J. Struct. Chem. 2017, 36, 1797–1802.Search in Google Scholar

8. Martínez, R. F., Ávalos, M., Babiano, R., Cintas, P., Jiménez, J. L., Light, M. E., Palacios, J. C. Schiff Bases from TRIS and ortho-hydroxyarenecarbaldehydes: structures and tautomeric equilibria in the solid state and in solution. Eur. J. Org Chem. 2011, 2011, 3137–3145; https://doi.org/10.1002/ejoc.201100275.Search in Google Scholar

9. Tarı, G. Ö., Tank, H., Macit, M., Erşahin, F., Isık, Ş. (E)-4-Methyl-2-{[tris(hydroxymethyl)-methyl]iminiomethyl}phenolate. Acta Crystallogr. 2010, E66, o85.Search in Google Scholar

10. Asgedom, G., Sreedhara, A., Kivikoski, J., Valkonen, J., Kolehmainen, E., Rao, C. P. Alkoxo bound monooxo- and dioxovanadium(V) complexes: synthesis, characterization, X-ray crystal structures, and solution reactivity studies. Inorg. Chem. 1996, 35, 5674–5683; https://doi.org/10.1021/ic960061r.Search in Google Scholar

11. Ng, S. W. Low-temperature redetermination of 4-chloro-2-[tris(hydroxymethyl) methyliminomethyl]phenol as zwitterionic 4-chloro-2-[tris(hydroxymethyl) methyliminiomethyl]phenolate. Acta Crystallogr. 2008, E64, o2455; https://doi.org/10.1107/s160053680803866x.Search in Google Scholar

12. Chumakov, Y. M., Tsapkov, V. I., Bocelli, G., Antosyak, B. Y., Gulya, A. P. Crystal structures of 6-[(2-hydroxy-1,1-bis-hydroxymethyl-ethylamino)-methylene]-4-nitro-cyclohexa-2,4-dienone hydrate and 6-[(2-hydroxy-1,1-bis-hydroxymethyl-ethylamino)-methylene]-4-bromo-cyclohexa-2,4-dienone. Zh. Strukt. Khim. 2006, 47, 346–351; https://doi.org/10.1007/s10947-006-0409-2.Search in Google Scholar

Received: 2022-01-21
Accepted: 2022-03-11
Published Online: 2022-03-22
Published in Print: 2022-06-27

© 2022 Hai-Bo Qin et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 15.5.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2022-0037/html
Scroll to top button