Skip to content
BY 4.0 license Open Access Published by De Gruyter (O) April 13, 2022

The crystal structure of N-cyclohexyl-3-hydroxy-4-methoxybenzamide, C14H19NO3

  • Jingxiao Zhang ORCID logo EMAIL logo , Xiaoxiao Zhao and Chenyu Cai

Abstract

C14H19NO3, monoclinic, Cc (no. 9), a = 11.1235(5) Å, b = 15.3724(5) Å, c = 8.1110(3) Å, β = 109.3980(10)°, V = 1308.21(9) Å3, Z = 4, R gt (F) = 0.0300, wR ref (F 2) = 0.0703, T = 170 K.

CCDC no.: 2162880

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal: Colorless block
Size: 0.19 × 0.12 × 0.08 mm
Wavelength: Mo Kα radiation (0.71073 Å)
μ: 0.09 mm−1
Diffractometer, scan mode: D8 VENTURE, φ and ω
θ max, completeness: 26.4°, 98%
N(hkl)measured, N(hkl)unique, R int: 5397, 2183, 0.030
Criterion for I obs, N(hkl)gt: I obs > 2 σ(I obs), 2059
N(param)refined: 166
Programs: Bruker [1], Olex2 [2], SHELX [3,4]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

Atom x y z U iso*/U eq
C1 0.8289 (2) 0.54322 (15) 0.8073 (3) 0.0300 (5)
H1A 0.829744 0.563750 0.691953 0.036*
H1B 0.836374 0.479027 0.809599 0.036*
C2 0.9426 (2) 0.58201 (15) 0.9510 (3) 0.0342 (5)
H2A 0.947738 0.556171 1.064961 0.041*
H2B 1.022184 0.567471 0.927759 0.041*
C3 0.9306 (2) 0.67980 (16) 0.9600 (3) 0.0406 (6)
H3A 0.936580 0.706160 0.851639 0.049*
H3B 1.001976 0.702560 1.059705 0.049*
C4 0.8050 (3) 0.70588 (16) 0.9818 (3) 0.0446 (7)
H4A 0.797911 0.770094 0.979177 0.054*
H4B 0.803547 0.685583 1.096951 0.054*
C5 0.6912 (2) 0.66731 (16) 0.8376 (3) 0.0363 (5)
H5A 0.611450 0.682380 0.860001 0.044*
H5B 0.686784 0.692608 0.723536 0.044*
C6 0.7030 (2) 0.56904 (14) 0.8306 (2) 0.0264 (5)
H6 0.702083 0.544733 0.944565 0.032*
C7 0.5438 (2) 0.45542 (14) 0.7058 (2) 0.0244 (4)
C8 0.4313 (2) 0.42465 (14) 0.5572 (2) 0.0250 (5)
C9 0.3970 (2) 0.33760 (15) 0.5611 (3) 0.0297 (5)
H9 0.445840 0.301741 0.654755 0.036*
C10 0.2946 (2) 0.30240 (14) 0.4333 (3) 0.0292 (5)
C11 0.2232 (2) 0.35452 (15) 0.2931 (2) 0.0268 (5)
C12 0.2550 (2) 0.44134 (14) 0.2892 (2) 0.0289 (5)
H12 0.205877 0.477203 0.195750 0.035*
C13 0.3583 (2) 0.47678 (14) 0.4209 (2) 0.0273 (5)
H13 0.378812 0.536592 0.417306 0.033*
C14 0.0574 (2) 0.35981 (16) 0.0171 (3) 0.0389 (6)
H14A −0.002209 0.320728 −0.066351 0.058*
H14B 0.117680 0.383832 −0.035700 0.058*
H14C 0.009878 0.407350 0.047473 0.058*
N1 0.59438 (17) 0.53236 (12) 0.6914 (2) 0.0275 (4)
H1 0.561283 0.562353 0.594380 0.033*
O1 0.58582 (15) 0.40977 (10) 0.83943 (17) 0.0294 (4)
O2 0.26862 (16) 0.21647 (11) 0.4463 (2) 0.0422 (5)
H2 0.200688 0.203312 0.366500 0.063*
O3 0.12553 (14) 0.31251 (10) 0.17128 (18) 0.0322 (4)

Source of material

The 3-hydroxy-4-methoxybenzoic acid (10 mmol), cyclohexylamine (10.4 mmol), and N,N-diisopropylethylamine (20 mmol) were dissolved in DMF (20 mL) initially, and 2-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate (HATU, 10.4 mmol) was added to the solution with stirring. After the mixture was stirred for 5 h, the reaction was completed (monitored by TLC). A saturated NaCl solution (100 mL) was added, and the product was extracted with ethyl acetate (50 mL) three times. The combined organics were washed with 5% citric acid, 5% NaHCO3, and H2O. Subsequently, the mixture was dried over MgSO4, filtered, and concentrated under vacuum to give the title product. Suitable crystals of the title compound were obtained by recrystallization in ethyl acetate and dried at ambient temperature for one week.

Experimental details

Hydrogen atoms were added in their geometrically idealized positions and treated as riding models on their parent atoms with U iso(H) = 1.2 U eq(C).

Comment

Amides are common functional groups in many biologically active molecules, natural products, and polymer materials and have attracted significant interest from medicinal chemists and chemical biologists [5], [6], [7]. The arylamides have been developed for various applications due to the ease of functionalization via substitution of the aromatic rings and the termini of the scaffold [8]. Arylamide derivatives have been widely used to inhibit treatment-related protein–protein interactions, such as Bcl-x L /Bak [9], p53/HDM2 [10], and c-Myc-Max [11]. They also effectively inhibit the aggregation of human proteins such as islet amyloid polypeptide [12] and amyloid-β [13]. Here, we report the crystal structure of a new methoxybenzamide derivative. Similar systems have been widely studied so far [1422].

The figure shows the molecular configuration of the title compound. In the amide functional group, the bond lengths of C7–O1, C7–N1, and N1–C6 are 1.245(3) Å, 1.331(3) Å, and 1.465(3) Å, and the angles of O1–C7–N1 and C7–N1–C6 are 121.99(16)° and 122.59(16)°, respectively. The molecule’s structure is similar to the stereo-configurations of the compounds reported in references [1822]. Methoxy and hydroxyl groups replace hydrogen atoms on the benzene ring, and the lengths of the C–O bonds are both 1.364(3) Å. The dihedral angle between the ring C8⃛C13 and the mean plane of the cyclohexane group (C1⃛C6) is 51.76°. The bond lengths and angles are all in the expected ranges.


Corresponding author: Jingxiao Zhang, College of Food and Medicine, Luoyang Normal University, Luoyang, China, E-mail:

Award Identifier / Grant number: 22A430032

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was financially supported by the Key Scientific Research Projects of Colleges and Universities in Henan Province (22A430032).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Bruker. SMART APEX-II CCD; Bruker AXS Inc.: Madison, WI, USA, 2006.Search in Google Scholar

2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

3. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

4. Sheldrick, G. M. SHELXTL – integrated space-group and crystal-structure determination. Acta Crystallogr. 2015, A71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

5. Kumari, S., Carmona, A. V., Tiwari, A. K., Trippier, P. C. Amide bond bioisosteres: strategies, synthesis, and successes. J. Med. Chem. 2020, 63, 12290–12358; https://doi.org/10.1021/acs.jmedchem.0c00530.Search in Google Scholar PubMed PubMed Central

6. Li, G., Szostak, M. Non-classical amide bond formation: transamidation and amidation of activated amides and esters by selective N–C/O–C cleavage. Synthesis 2020, 52, 2579–2599.10.1055/s-0040-1707101Search in Google Scholar

7. de Figueiredo, R. M., Suppo, J.-S., Campagne, J.-M. Nonclassical routes for amide bond formation. Chem. Rev. 2016, 116, 12029–12122; https://doi.org/10.1021/acs.chemrev.6b00237.Search in Google Scholar PubMed

8. Gangarde, Y. M., Das, A., Ajit, J., Saraogi, I. Synthesis and evaluation of arylamides with hydrophobic side chains for insulin aggregation inhibition. ChemPlusChem 2021, 86, 750–757; https://doi.org/10.1002/cplu.202100036.Search in Google Scholar PubMed

9. Yin, H., Lee, G.-i., Sedey, K. A., Kutzki, O., Park, H. S., Orner, B. P., Ernst, J. T., Wang, H.-G., Sebti, S. M., Hamilton, A. D. Terphenyl-based Bak BH3 α-helical proteomimetics as low-molecular-weight antagonists of Bcl-xL. J. Am. Chem. Soc. 2005, 127, 10191–10196; https://doi.org/10.1021/ja050122x.Search in Google Scholar PubMed

10. Yin, H., Lee, G. i., Park, H. S., Payne, G. A., Rodriguez, J. M., Sebti, S. M., Hamilton, A. D. Terphenyl-based helical mimetics that disrupt the p53/HDM2 interaction. Angew. Chem. 2005, 117, 2764–2767; https://doi.org/10.1002/ange.200462316.Search in Google Scholar

11. Jung, K.-Y., Wang, H., Teriete, P., Yap, J. L., Chen, L., Lanning, M. E., Hu, A., Lambert, L. J., Holien, T., Sundan, A. Perturbation of the c-Myc-Max protein-protein interaction via synthetic α-helix mimetics. J. Med. Chem. 2015, 58, 3002–3024; https://doi.org/10.1021/jm501440q.Search in Google Scholar PubMed PubMed Central

12. Hebda, J. A., Saraogi, I., Magzoub, M., Hamilton, A. D., Miranker, A. D. A peptidomimetic approach to targeting pre-amyloidogenic states in type II diabetes. Chem. Biol. 2009, 16, 943–950; https://doi.org/10.1016/j.chembiol.2009.08.013.Search in Google Scholar

13. Kumar, S., Hamilton, A. D. α-helix mimetics as modulators of Aβ self-assembly. J. Am. Chem. Soc. 2017, 139, 5744–5755; https://doi.org/10.1021/jacs.6b09734.Search in Google Scholar

14. Zhao, B., Shang, R., Wang, G.-Z., Wang, S., Chen, H., Fu, Y. Palladium-catalyzed dual ligand-enabled alkylation of silyl enol ether and enamide under irradiation: scope, mechanism, and theoretical elucidation of hybrid alkyl Pd(I)-radical species. ACS Catal. 2020, 10, 1334–1343; https://doi.org/10.1021/acscatal.9b04699.Search in Google Scholar

15. Jin, L.-M., Lu, H., Cui, Y., Lizardi, C. L., Arzua, T. N., Wojtas, L., Cui, X., Zhang, X. P. Selective radical amination of aldehydic C(sp2)–H bonds with fluoroaryl azides via Co(II)-based metalloradical catalysis: synthesis of N-fluoroaryl amides from aldehydes under neutral and nonoxidative conditions. Chem. Sci. 2014, 5, 2422–2427; https://doi.org/10.1039/c4sc00697f.Search in Google Scholar

16. Parra, R. D., Zeng, H., Zhu, J., Zheng, C., Zeng, X. C., Gong, B. Stable three-center hydrogen bonding in a partially rigidified structure. Chem. Eur J. 2001, 7, 4352–4357; https://doi.org/10.1002/1521-3765(20011015)7:20<4352::aid-chem4352>3.0.co;2-l.10.1002/1521-3765(20011015)7:20<4352::AID-CHEM4352>3.0.CO;2-LSearch in Google Scholar

17. Karabulut, S., Namli, H., Kurtaran, R., Yildirim, L. T., Leszczynski, J. Modeling the intermolecular interactions: molecular structure of N-3-hydroxyphenyl-4-methoxybenzamide. J. Mol. Graph. Model. 2014, 48, 1–8; https://doi.org/10.1016/j.jmgm.2013.11.001.Search in Google Scholar

18. Wigbers, C., Prigge, J., Mu, Z., Fröhlich, R., Chi, L., Würthwein, E.-U. Synthesis, structures, and aggregation properties of N-acylamidines. Eur. J. Org Chem. 2011, 2011, 861–877; https://doi.org/10.1002/ejoc.201001155.Search in Google Scholar

19. Wang, M.-M., Nguyen, T. V. T., Waser, J. Diamine synthesis via the nitrogen-directed azidation of σ- and π-C–C bonds. J. Am. Chem. Soc. 2021, 143, 11969–11975; https://doi.org/10.1021/jacs.1c06700.Search in Google Scholar

20. Ruan, P., Tang, Q., Yang, Z., Liu, X., Feng, X. Enantioselective formal [2 + 2 + 2] cycloaddition of 1,3,5-triazinanes to construct tetrahydropyrimidin-4-one derivatives. Chem. Commun. 2022, 58, 1001–1004; https://doi.org/10.1039/d1cc06549a.Search in Google Scholar

21. Rauf, M. K., Bolte, M., Badshah, A. 3-Chloro-N-cyclohexylbenzamide. Acta Crystallogr. 2009, E65, o1265; https://doi.org/10.1107/s1600536809017012.Search in Google Scholar

22. Saeed, A., Khera, R. A., Abbas, N., Flörke, U. N-Cyclohexyl-3-fluorobenzamide. Acta Crystallogr. 2008, E64, o2209; https://doi.org/10.1107/s1600536808034478.Search in Google Scholar

Received: 2022-02-06
Accepted: 2022-03-29
Published Online: 2022-04-13
Published in Print: 2022-08-26

© 2022 Jingxiao Zhang et al., published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 22.5.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2022-0066/html
Scroll to top button